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Key points 

• Triple collocation is commonly used to estimate the RMSE of measurement system 

estimates 

• We extend it to estimate correlation between the measurements and unknown target 

variable 

• The new approach requires no additional assumptions or computational burden 

Abstract 

Calibration and validation of geophysical measurement systems typically requires knowledge of 

the “true” value of the target variable. However, the “true” values often include their own 

measurement errors, calibration biases, and validation results. Triple collocation (TC) can be 

used to estimate the root-mean-square-error (RMSE), using observations from three mutually-

independent, error-prone measurement systems. Here, we introduce Extended Triple Collocation 

(ETC): using exactly the same assumptions as TC, we derive an additional performance metric, 

the correlation coefficient of the measurement system with respect to the unknown target, . 

We demonstrate that  is the scaled, unbiased signal-to-noise ratio, providing a 

complementary (and sometimes, very different) perspective compared to the RMSE. We apply it 

to three collocated wind datasets. Since ETC is as easy to implement as TC, requires no 

additional assumptions, and provides an additional performance metric, we suggest it may be of 

interest in a wide range of geophysical disciplines. 

Index terms: Remote sensing (1855); Remote sensing (3360); Remote sensing and 

electromagnetic processes (4275); Estimating and forecasting (1816); Model calibration (1846) 

Keywords: triple collocation; signal-to-noise ratio; model validation; model calibration; 

correlation coefficient 

1. Introduction 

Geophysical measurement systems, such as in-situ sensor networks, satellites and models, 

require calibration and validation. This requires comparison of their measurements with true 



observations of the target variable. A range of performance metrics exist to summarize this 

comparison, including the root-mean-square-error (RMSE) and correlation coefficient. No single 

metric can capture all relevant characteristics of the relationship between the measurement 

system and the target, which may include, but are not limited to, the measurement system’s bias, 

noise and sensitivity with respect to the target variable (Entekhabi et al., 2010). 

In practice, however, the “true” observations are themselves imperfect due to their own 

measurement errors and differences in support scale. Triple collocation (TC) is a technique for 

estimating the unknown error standard deviations (or RMSEs) of three mutually-independent 

measurement systems, without treating any one system as perfectly-observed “truth” (Stoffelen, 

1998). It assumes a linear error model where errors are uncorrelated with each other and the 

target variable. TC has been used widely in oceanography to estimate errors in measurements of 

sea surface temperature (Gentemann, 2014; O’Carroll et al., 2008), wind speed and stress 

(Portabella and Stoffelen, 2009; Stoffelen, 1998; Vogelzang et al., 2011), and wave height 

(Caires and Sterl, 2003; Janssen et al., 2007). It has also been used in hydrology to estimate 

errors in measurements of precipitation (Roebeling et al., 2012), fraction of absorbed 

photosynthetically active radiation (D’Odorico et al., 2014) and, particularly, soil moisture 

(Anderson et al., 2012; Dorigo et al., 2010; Draper et al., 2013; Hain et al., 2011; Miralles et al., 

2010; Parinussa et al., 2011; Scipal et al., 2008; Su et al., 2014). It has been applied in data 

assimilation (Crow and van den Berg, 2010), and can also be used to optimally rescale two 

measurement systems to a third reference system (Stoffelen, 1998; Yilmaz and Crow, 2013).  

While TC is a powerful approach for estimating one metric of measurement system performance 

(RMSE), a suite of metrics are needed for calibration and validation. In this paper, we extend TC 

to also estimate the correlation coefficient of each measurement system with respect to the 

unknown target variable. We call this approach Extended Triple Collocation (ETC). ETC is 

simple to implement and adds no additional assumptions or computational cost to TC. In section 

2, we review TC and introduce ETC, deriving an equation for the correlation coefficient from the 

assumptions of TC alone. We show that the correlation coefficients provide important insights 

into the fidelity of the measurement systems to the target variable beyond those provided by the 

RMSE, combining information on the measurement system’s sensitivity and noise with 

information on the strength of the target signal. In section 3, we present a collocated dataset of 



ocean surface wind measurements from buoys, satellite scatterometers and a Numerical Weather 

Prediction (NWP) forecast model and apply ETC to it in section 4. 

2. Methods 

2.1 Triple collocation 

In this section, we review the derivation of the TC estimation equations. We begin with an affine 

error model relating measurements to a (geophysical) variable, a standard form used in the triple 

collocation literature (Zwieback et al., 2012): 

                                                (1) 

where the   ( ) are measurement systems linearly related to the true underlying 

value  with random errors , respectively. They could represent, for instance, outputs from a 

land-surface model, a remotely sensed product, and point measurements from ground stations. 

 and  are all random variables.  and  are the ordinary least-squares (OLS) 

intercepts and slopes, respectively. We assume that the errors are uncorrelated with each other 

( ) and with t ( ). 

The covariances between the different measurement systems are given by 

 

where . By assumption, the two middle terms on the right hand side are zero, and 

so is the last when , so the equation reduces to 

 

where . Since there are six unique terms in the covariance matrix, we have six 

equations but seven unknowns; therefore, the system is underdetermined and there is no unique 

solution. However, if we forego solving for  and , and instead define a new variable 

, we can write  



    (2) 

We now have six equations and six unknowns, and can solve the system. We obtain the TC 

estimation equation for RMSE, 

 

We may also solve for , but this is not typically done in TC . We will show in the next 

section that  contains useful information that forms the basis for ETC. 

In practice, representativeness errors exist due to differences in support scale between 

measurement systems. These can be included as subtle cross-correlations  between the errors 

 such that . This introduces additional unknowns into the problem, 

rendering it underdetermined. To avoid this, the representativeness error has been ignored in 

many studies that use TC, often without justification. However, if an estimate for  exists, it 

can be easily subtracted from . For wind measurements,  can be estimated using 

assumptions about the wind spectra (Stoffelen, 1998; Vogelzang et al., 2011), but little is known 

about the representativeness error for other target variables. 

If we are willing to treat one of the measurement systems as a reference with known calibration 

(i.e., known  and ), we can reduce the number of unknowns and solve for the remaining 

unknowns without introducing . Without loss of generality, assume  is the reference system 

and has been perfectly calibrated to  so that  and . Then we have 

 

 



where the overbars denote sample means. Note that in this case the expressions for the slope 

differ from the OLS results, because now  and  are calibrated with respect to  rather than 

to the unknown truth . The system is often solved iteratively, incorporating an outlier detection 

and removal process. This is very important since covariance matrix estimates are highly 

sensitive to outliers. In many studies, the measurement systems are rescaled before applying TC, 

presuming  and , which would simplify the TC estimation 

equation to  

 

Note however that the error model in (1) implies 6 equations and 7 unknowns, such that the 

measurement systems cannot be scaled to unity before TC, but rather TC is the only way to 

obtain relative calibration (e.g., using  and ). For example, if we first move 

system 2 such that 21 XX =  then taa )( 1221 ββ −+= , prior to TC an equation with only 

unknowns, i.e., if it was a priori known that 01 =a , then there is no guarantee that 02 =a . If, in 

addition, we would have scaled system 2 prior to TC such that 2211 QQ = , then it follows 

that ( ) ( )22
2

221 21
1 tt σβσσβσββ εε −+= , prior to TC an equation with only unknowns, i.e., 

if it was a priori known that 11 =β , then there is no guarantee that 12 =β . In other words, when 

the noise is non-negligible, techniques such as bias correction and scaling do not generally 

deliver unbiased nor well-calibrated measurement systems. Prior PDF matching of the three 

systems may be useful in order to improve the linear dependence of the systems according to 

equation (1). 

2.2 Extended triple collocation 

In this section, we show that  can be used to solve for the correlation coefficients of the 

measurement systems with respect to the unknown truth. We demonstrate that the correlation 

coefficient contains useful information beyond that provided by the RMSE. Recall that for OLS, 

       (3) 



where  is the correlation coefficient between  and . We emphasize that the independent 

variable  is the true underlying value and not subject to measurement error, so the OLS 

framework is valid. If there are errors in the measurement of  that are not captured by the error 

model (1), then the OLS slope will be biased and a new error model will be required (Cornbleet 

and Gochman, 1979; Deming, 1943). Overcoming these biases was, in fact, the original 

motivation for the development of triple collocation, rather than the estimation of RMSEs 

(Stoffelen, 1998). 

The key insight of ETC is that, from (3), we obtain . Since  is already 

estimated from the data, and since we can solve for  using (2), we can solve for . We 

obtain the new ETC estimation equation 

 

where the  are correct up to a sign ambiguity. In practice, the measurement systems will 

almost always be expected to be positively correlated to the unobserved truth.  

The correlation coefficients provide important new information about the performance of the 

measurement systems. For the given error model (1), it can be shown that 

     (4) 

where we define   to be the unbiased signal-to-noise-ratio 

(in contrast, the standard signal-to-noise ratio is ). The squared correlation 

coefficient, therefore, is the unbiased signal-to-noise ratio, scaled between 0 and 1. It combines 

information about (i) the sensitivity of the measurement system  (ii) the variability of the 



signal  and (iii) the variability of the measurement error . In standard triple collocation (i)-

(iii) are estimated in order to calibrate the three systems mutually, taking one of the measurement 

systems as reference. Its intended purpose is for calibration against a reference measurement 

system. However, before calibration,  contains useful additional information relevant to 

measurement system validation that is not included in . This is clear from the fact that, for a 

fixed MSE,  may take any value between 0 and 1, its full range. This makes sense 

intuitively: a given noise level may be too high for a low-sensitivity system measuring a weak 

signal, but acceptable for a high-sensitivity system measuring a strong signal. 

3. Wind data 

In this section, we describe the buoy, NWP and scatterometer wind products used in this study as 

a case study for ETC. TC was originally designed for application to wind velocities (Stoffelen, 

1998), and this target variable more closely matches the assumptions of TC compared to other 

variables such as soil moisture (Yilmaz and Crow, 2014). Unlike other target variables, 

reasonable estimates of the representativeness error also exist (Stoffelen, 1998; Vogelzang et al., 

2011). We use the same collocated triplets as in Vogelzang et al. (2011) and refer the reader to 

this study for more detail on the data used; for completeness, we give a brief description here. 

Three different scatterometer products are used. Wind retrievals from EUMETSAT’s C-band 

Advanced SCATterometer (ASCAT) are processed to generate two different products: the 

ASCAT-12.5 product on a 12.5 km grid, and the ASCAT-25 product on a 25 km grid. Retrievals 

from the SeaWinds sensor on board QuikSCAT are processed to generate the SeaWinds-KNMI 

product on a 25 km grid. Vogelzang et al. (2011) consider a fourth product, SeaWinds-NOAA, 

processed by the National Oceanic and Atmospheric Administration. This product exhibited 

anomalous behavior compared to the others and is omitted from this study.  Table 1 gives further 

details on the scatterometer products used, including their grid size, representativeness errors and 

number of observations available that were also collocated with a buoy and NWP measurement. 

The very large sample sizes (much larger than the recommended value of ~500 given by 

Zwieback et al. (2012)) ensure precise ETC estimates. 

Quality-controlled buoy data are taken from the European Center for Medium-range Weather 

Forecasting (ECMWF) Meteorological Archival and Retrieval System. The NWP forecasts are 



also obtained from the ECMWF. Collocated buoy-scatterometer-NWP triplets are obtained for 

the period November 1, 2007 – November 30, 2009, except for those including the ASCAT-12.5 

product, where the period is October 1, 2008 – November 30, 2009. The study domain is largely 

restricted to the tropics and the coasts of Europe and North America, due to a lack of reliable 

buoy observations outside these regions. The data are plotted in Figure 1. Note that for each 

dataset, the marginal distributions are approximately Gaussian, although Gaussian data are not 

required for TC or ETC (indeed, TC has frequently been applied to non-Gaussian data such as 

soil moisture). It does, however, ensure that the RMSE is well-defined and assists in 

interpretation. The correlations in the SeaWinds-KNMI and buoy data are due to binning.  

<insert Table 1 around here> 

<insert Figure 1 around here> 

We use the ASCAT Wind Data Processor (AWDP) triple collocation scheme described in 

Vogelzang and Stoffelen (2012, available at 

http://research.metoffice.gov.uk/research/interproj/nwpsaf/scatterometer/TripleCollocation_NW

PSAF_TR_KN_021_v1_0.pdf), updated to also calculate correlation coefficients. The scheme 

solves iteratively for the RMSEs and correlation coefficients and includes quality-control and 

outlier detection and removal steps. We subtract out representativeness errors (Table 1) 

calculated in (Vogelzang et al., 2011). We estimate 95% confidence intervals using 

bootstrapping (Efron and Tibshirani, 1994) with N = 100 replicates. 

4. Results and Discussion 

<insert Figure 2 around here> 

Figure 2 shows the ETC estimates of u, v RMSE and correlation coefficient for the buoy, NWP 

and various scatterometer products. The RMSE estimates are with respect to the NWP resolution 

scale and are identical with those in table 4 of Vogelzang et al. (2012). They are all low and the 

correlation coefficients are all high. They are consistent with reasonable guesses for  and . 

As an example, consider the ETC estimates of scatterometer u RMSE  and 

correlation coefficient , estimated using ASCAT-12.5 scatterometer data (we 

use the mean of the bootstrapped replicates here). Substituting into (4), and assuming , we 



obtain . While the true value of  is unknown, this estimate appears very reasonable 

given the marginal distribution of u in Fig. 1a). 

The results demonstrate the importance of using a validation metric that combines measures of 

noise and sensitivity, rather than noise alone. Focusing on the scatterometer ETC estimates, we 

see that, for u, the highest correlation coefficients correspond to the lowest RMSEs and vice 

versa. Since  does not vary between scatterometer products, this suggests that differences in 

noise dominate differences in sensitivity between products. For v, however, this is not the case: 

ASCAT-12.5 has the highest RMSE but does not have the lowest correlation coefficient. This 

suggests that, while ASCAT-12.5 estimates of v are noisier than those of ASCAT-25, ASCAT-

12.5 has a greater ubSNR because it is more sensitive to the signal, v, although it may also be an 

artifact caused by incorrect assumptions in the error model (1). In this case study, the differences 

in noise and sensitivity between products are relatively small. However, it is easy to imagine 

scenarios where validating multiple satellite products on the basis of RMSE alone, compared to a 

combination of RMSE and correlation coefficient, could yield very different interpretations of 

their relative performances.   

Using different scatterometer products, we would expect the ETC estimates of buoy RMSEs and 

correlation coefficients to vary according to support scales; similarly, for the NWP estimates. 

Indeed, small differences are seen, explained by varying representativeness errors (particularly 

for the NWP estimates), and are due to subtle variations of the error model’s values. If the error 

model given in (1) is not valid, the estimates of RMSE and correlation coefficient will be biased. 

The results are particularly sensitive to the assumption of independent errors between buoy, 

scatterometer and NWP estimates.  However, these are all pre-existing weaknesses in TC and not 

unique to ETC. ETC uses exactly the same assumptions as TC. 

4. Conclusions 

Triple collocation is a powerful and popular technique for calibrating and validating 

measurement system estimates of geophysical target variables. In this paper, we introduced ETC: 

using exactly the same error model and assumptions as TC, we derived the correlation 

coefficient of each measurement system with respect to the unknown target variable. We 

demonstrated that ETC’s correlation coefficient provides useful insights into the correspondence 



between the measurement system estimates and the target variable, beyond those provided by 

TC’s RMSE estimate. By integrating information on the measurement system’s sensitivity to the 

target variable, measurement noise and the variability of the target variable itself, the correlation 

coefficient provides a complementary (and sometimes, very different) perspective to that of the 

RMSE when validating measurement systems. In particular, the measurement noise (estimated 

by the RMSE) is much more informative when interpreted relative to the observed signal: for 

instance, a small amount of measurement noise, in absolute terms, may still be of concern if the 

measurement system is relatively insensitive to the target variable, and/or the target signal is 

weak. Since ETC uses exactly the same assumptions as TC, it appears that it may also facilitate 

the estimation of correlation coefficients in recent generalizations of TC from  

measurement systems to  (Zwieback et al., 2012) and, in cases where the target variable 

has sufficient temporal autocorrelation,  (Su et al., 2014). Finally, since ETC is as easy to 

implement as TC, requires no additional assumptions, and provides estimates of two 

complementary performance metrics instead of one, we suggest it may be of interest to 

practitioners in a wide range of geophysical disciplines. 
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Tables 

Table 1: Scatterometer productsa  

Product Grid size (km)   N 

ASCAT-12.5 12.5 0.63 1.00 32,317 

ASCAT-25 25 0.49 0.69 54,187 

SeaWinds-KNMI 25 1.28 0.44 76,947 
aThe scatterometer products and values used are identical to those used in Vogelzang et al. 

(2011). N is the number of collocated triplets available for each product.  and  are the 

estimated representativeness errors in the u and v wind component measurements, respectively. 

Figures 

 



Figure 1. Scatter plots and kernel-density-estimated marginal distributions for the wind data used 

in this study, where u is the zonal wind velocity and v is the meridional wind velocity. Plots for 

scatterometer products correspond to a) ASCAT-12.5 b) ASCAT-25 c) SeaWinds-KNMI. Plots 

for d) buoys and e) NWP products are also shown. The marginal distributions are all 

approximately normal for all products used. 

 

Figure 2: (Rows 1 and 3): Triple collocation estimates of the RMSEs for u ( ) and v ( ) 

for the buoy, scatterometer and NWP products, respectively.  Scatterometer products used are 

indicated using the labels marked in Fig. 1. (Rows 2 and 4): Extended triple collocation estimates 

of the correlation coefficient for u ( ) and v ( ) for the buoy, scatterometer and NWP 

products, respectively. Bootstrap estimates (N = 100 replicates) of the 95% confidence intervals 

are shown for each estimate. The bootstrapped sample means of  and  are identical to 

the values given in Table 4 of Vogelzang et al. (2011). 

 


