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Abstract 

Recent work has shown the important properties of the wind inversion residual or Maximum 

Likelihood Estimator (MLE) for Quality Control (QC) of QuikSCAT Hierarchichal Data 

Format (HDF) observations. Since March 2000, the QuikSCAT Near-Real Time (NRT) 

Binary Universal Format Representation (BUFR) product is available. As this product is used 

for Numerical Weather Prediction (NWP) assimilation purposes, a QC procedure for the 

BUFR product is needed. 

We study the behavior of the MLE in order to determine whether the HDF QC procedure is 

appropriate for BUFR data. A comparison using real HDF and BUFR data reveals that the 

MLE distributions of HDF and BUFR differ and are actually poorly correlated. One important 

difference between BUFR and HDF is the amount of signal averaging prior to wind inversion. 

                                                           
1 IEEE Trans. Geosci. Rem. Sens., Vol. 40, No.12, pp. 2747-2759, 2002.  Institute of Electrical and 
Electronics Engineers. 



 2

The averaging reduces the number of observations used in the wind retrieval for the BUFR 

product as compared to HDF. We show with a simple example that different MLE 

distributions are indeed expected due to this averaging. We also run a simulation in order to 

link theory and reality and better understand the behavior of the MLE. 

Despite the different MLE behavior in BUFR and HDF, the quality of the retrieved winds, as 

compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) winds, 

is very similar. We develop an MLE-based QC procedure for BUFR similarly to the one in 

HDF, and we compare both. The skill of the QC in BUFR is again very similar to the one in 

HDF, showing that despite the different MLE behavior in both formats, the properties of the 

MLE as a Quality Control indicator remain very similar. 

 

1 Introduction 

 

The forecast of extreme weather events is not always satisfactory, while its consequences can 

have large human and economic impact. The lack of observations over the oceans, where 

many weather disturbances develop, is one of the main problems of Numerical Weather 

Prediction (NWP) for predicting their intensity and position. A space-borne scatterometer 

with extended coverage is able to provide accurate winds over the ocean surface and can 

potentially contribute to improve the situation for tropical and extratropical cyclone 

prediction ([1], [2], and [3]). 

The impact of observations on weather forecast often critically depends on the Quality 

Control (QC) applied. For example, [4] show a positive impact of cloud motion winds on the 
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European Centre for Medium-Range Weather Forecasts (ECMWF) model after QC, while the 

impact is negative without QC. This is also applicable for scatterometer data. Besides its 

importance for NWP, in applications such as nowcasting and short-range forecasting, the 

confidence of meteorologists in the scatterometer data is boosted by a better QC. Therefore, 

in order to successfully use scatterometer data in any of the mentioned applications, a 

comprehensive QC needs to be done in advance. 

Recent and past work on scatterometer QC points out the wind retrieval residual as a good 

QC indicator. [5], [6], and [7] use a method to detect and reject Wind Vector Cells (WVC) 

with poor quality wind information using a residual-based parameter for ERS, NSCAT and 

SeaWinds respectively. Additional work on the relevance of the wind retrieval for QC 

purposes can be found in [8]. 

The distribution of residuals is therefore important for QC purposes. The wind retrieval 

residual or Maximum Likelihood Estimator (MLE) indicates how well the backscatter 

measurements used in the retrieval of a particular wind vector fit the Geophysical Model 

Function (GMF), which is derived for fair weather wind conditions. A large inconsistency 

with the GMF results in a large MLE, which indicates geophysical conditions other than those 

modeled by the GMF, such as for example rain, confused sea state, or ice, and as such the 

MLE provides a good indication for the quality of the retrieved winds. 

The SeaWinds data are first processed at the Jet Propulsion Laboratory (JPL) and then 

distributed in two different formats. The QuikSCAT Hierarchical Data Format (HDF) product 

is directly distributed by JPL and the near-real time Binary Universal Format Representation 

(BUFR) product is distributed by the National Oceanic and Atmospheric Administration 

(NOAA). Since the first data were distributed only in HDF format, [7] performed a QC 

procedure for QuikSCAT in this data format. However, since March 2000, the QuikSCAT 



 4

near-real time BUFR product is available. As this product is the one used for assimilation 

purposes, a QC procedure needs to be set for BUFR data. 

Figure 1 shows the contour plot of the two-dimensional histogram of the BUFR MLE versus 

the HDF MLE. The plot shows, as expected, small correlation (around 0.5) between both 

MLE distributions. Moreover, the mean BUFR MLE value (0.28) is significantly smaller than 

the mean HDF value (0.57). It may be clear from these results that in order to determine 

whether to use a similar QC procedure for BUFR than the one used for HDF data or not, a 

comprehensive characterization of the MLE is needed. 

In section 2, the SeaWinds instrument and data are presented. In section 3, we provide an 

explanation for MLE differences observed by presenting a theoretical example, a simulation 

study, and a detailed analysis of the real data. Then, the influence of the MLE differences in 

wind retrieval and QC is tested in section 4. Finally, conclusions and recommendations are 

presented in section 5. 

 

2 Instrument and Data 

 

The SeaWinds instrument onboard QuikSCAT satellite (launched in June 19, 1999) is a 

conical-scanning pencil-beam scatterometer. It uses a rotating 1-meter dish antenna with two 

spot beams, an H-pol beam and a V-pol beam at incidence angles of 46º and 54º respectively, 

that sweep in a circular pattern. The antenna radiates microwave pulses at a frequency of 13.4 

GHz (Ku-Band) across a 1800-km-wide swath centered on the spacecraft’s nadir subtrack, 
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making approximately 1.1 million 25-km ocean surface wind vector measurements and 

covering 90% of the Earth’s surface every day. 

The SeaWinds swath is divided into equidistant across-track WVCs or nodes numbered from 

left to right when looking along the satellite’s propagation direction. The nominal WVC size 

is 25 km x 25 km, and all backscatter measurements centered in a WVC are used to derive the 

WVC wind solutions. Due to the conical scanning, a WVC is generally viewed when looking 

forward (fore) and a second time when looking aft. As such, up to four measurement classes 

(called “beam” here) emerge: H-pol fore, H-pol aft, V-pol fore, and V-pol aft, in each WVC. 

Due to the smaller swath (1400 km) viewed in H-pol at 46º degrees incidence, the outer swath 

WVCs have only V-pol fore and aft backscatter measurements. For more detailed information 

on the QuikSCAT instrument and data we refer to [9], [10], and [11]. 

As mentioned in section 1, the QuikSCAT data are distributed in two different formats: HDF 

and BUFR. In order to characterize the MLE for QC purposes, 3 days of QuikSCAT sweet 

swath (WVC numbers 9 to 28 and 49 to 68) data in both data formats is used. 

The main difference between the HDF and the BUFR products is related to the spatial 

resolution of σº. In the BUFR product, the σº of a particular beam (fore-inner, fore-outer, aft-

inner, aft-outer) is an average of all σºs of that particular beam which fall in the same WVC. 

In HDF, all separate σºs are provided. 

The SeaWinds σºs can be either “eggs” or slices. In a particular WVC, an “egg” σº is the 

radar backscatter from the whole pulse or footprint whose centre falls in that WVC. The 

“egg” can be subdivided in individual range-sampling elements or slices; the slices of a 

particular “egg” whose centre fall in the same WVC are weight- averaged (the weighting 

factor is directly dependent on the noise of each slice “measurement”) to become a composite 
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σº. The antenna footprint or “egg” is an ellipse approximately 25-km in azimuth by 37-km in 

the look (or range) direction. The slices are 25-km in azimuth by a variable range sampling of 

approximately 2 to 10 km (the nominal width is 6 km). 

The HDF real data are given (up to now) in “egg” resolution. Therefore, although the size of 

the WVC is 25 km, the actual resolution of the winds retrieved from all “egg” σ°s in a WVC 

is approximately 40 km. Composites enhance the wind resolution mainly in range direction 

down to 25 km, and have little effect on azimuth resolution. 

In order to characterize and validate the QC procedure for BUFR data, we collocate the 

QuikSCAT data with ECMWF winds and Special Sensor Microwave Imager (SSM/I) rain 

data. The QuikSCAT data correspond to the preliminary science data products produced by 

JPL using the NSCAT-2 GMF. [Note that the latest version of QuikSCAT processing uses 

QSCAT-1 GMF. [12] show that NSCAT-2 better fits the σ° measurements than QSCAT-1, 

i.e. the mean MLE for NSCAT-2 is lower than for QSCAT-1] 

We use the analyses, and 3-hour, 6-hour, and 9-hour forecast ECMWF winds on a 62.5-km 

grid and we interpolate them both spatially and temporally to the QuikSCAT data acquisition 

location and time respectively. 

The collocation criteria for SSM/I rain data are less than 30 minutes time and 0.25º spatial 

distance from the QuikSCAT measurement. The SSM/I instruments are on board DMSP 

(Defense Meteorological Satellite Program) satellites. We have used DMSP F-13 and F-14 

satellites (the most recent ones). Most of the collocations with F-13 were found at low 

latitudes (tropics) while collocations with F-14 were found at mid and high latitudes. 
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3 MLE Characterization: Effects of σo Averaging on its Distribution 

 

The wind retrieval minimizes the MLE or residual, which is for SeaWinds defined as 

(adopted from [10]): 
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where N is the number of measurements, σmi
o is the backscatter measurement, σsi

o is the 

backscatter simulated through the Geophysical Model Function (GMF) for different wind 

speed and direction trial values, and Kp(σsi
o) is the measurement error variance. 

[5] interpret the MLE as a measure of the (squared) distance between a set of σmi
o and the 

solution σsi
o set lying on the GMF surface in a transformed measurement space where each 

axis of the measurement space is scaled by Kp(σsi
o). 

As mentioned in Section 1, the MLE is a good QC indicator in scatterometry. In the case of 

QuikSCAT, a MLE-based method successfully quality controls the HDF data ([7]). Therefore, 

if a QC procedure needs to be set for BUFR data, a closer look into the MLE distribution is 

needed. 

As discussed in Section 2, a BUFR σo is an average of all the HDF σo measurements per 

beam in a WVC. From a theoretical point of view, the HDF and BUFR MLE distribution 

characteristics may differ just by using a different number of σo in their computation. In this 

section, we show this with a simple example. In order to validate the theoretical results, a 



 8

simulation is performed to bridge the gap between theory and reality. Finally, the remaining 

differences between real and simulated differences are analyzed in detail. 

 

3.1 Theoretical case 

 

This case corresponds to a simplified version of the MLE, which uses the following set of 

assumptions:  

1) Typically for SeaWinds, HDF contain N>4 σo per WVC while BUFR contain M=4 σo per 

WVC in the inner swath. Therefore, the MLE is computed for HDF in a higher 

dimensional measurement space than for BUFR. In this example we simplify the problem 

assuming N=2 and M=1. 

2) The truth or solution lies in the origin of our measurement space for simplicity. 

3) Since in scatterometry the errors are considered Gaussian, we consider pairs of 

measurements (x,y) in the N(=2)-dimensional space as Gaussian distributed points around 

the origin (solution). Therefore, we use the following two-dimensional Gaussian 

Probability Density Function (PDF): 
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where the standard deviation in both axis is assumed identical, i.e. σ =σx = σy. 

4) For simplicity, we also assume constant Kp noise values for both HDF and BUFR. As 

such, the MLE is equivalent to a squared distance to the origin weighted by a constant 
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factor. Moreover, this assumption is important since it will allow us to show the 

significant change between the mentioned MLE distributions just by setting N>M. 

 

Mathematical demonstration 

In order to show the difference between two distributions, we use the following mathematical 

definitions: 

• The mean or expected value of a function f(x,y) is defined in terms of the PDF p(x,y) by 
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• The standard deviation (SD) of a function f(x,y) is defined in terms of the PDF p(x,y) by 
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where VAR is the variance. 

• Finally, the correlation between two functions f(x,y) and g(x,y) is defined by 
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Using the above assumptions, we can rewrite equation 1 for both HDF and BUFR cases: 

a) HDF (N=2) 

Using the above assumed measurement noise, i.e. σ (see assumption 4), the MLE in the 

2D case is:  
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b) BUFR (M=1) 

In this case, the measurement is an average of the two measurements, z = 
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In order to show that the distributions of MLE1D and MLE2D (analogous to MLE in BUFR and 

HDF, respectively) differ, we compute their mean values, standard deviations and the 

correlation using the above mathematical definitions (equations 3, 4, and 5). 

The results show that reducing the number of dimensions from two to one in the observational 

space by averaging the observations, does not affect the mean MLE value 

(E(MLE1D)=E(MLE2D)=1) but produces an increase in the SD of the MLE distribution 

(SD(MLE1D)=1 while SD(MLE2D)= 2 ). Moreover, there is a clear decorrelation between the 

2D and the 1D MLE distributions (COR(MLE1DMLE2D)= 2/1 ≈ 0.7). Therefore, it is clear 

that the distributions differ. 

In Figure 1, we directly compare the MLE distributions from the HDF and BUFR products for 

the entire set of 3 days of QuikSCAT HDF data collocated with the QuikSCAT BUFR data. 

The contour plot of the two-dimensional histogram of the BUFR MLE versus the HDF MLE 

shows indeed small correlation between both MLE distributions, as presented in the 

introduction. However, the results differ somewhat from the theoretical example. The 
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correlation is smaller in the real case and the ratio between the mean values of HDF and 

BUFR distributions is 1 in the case of the theoretical example while 2 in the real case where 

the mean BUFR MLE value (0.28) is substantially smaller than the mean HDF value (0.57). 

This can be expected, since the theoretical example is just a simplification of the problem as 

discussed above. In order to understand the real results in more detail, a simulation is needed. 

 

3.2 MLE Simulation 

 

In the simple example that we theoretically solve in Section 3.1, we show that the small 

correlation between HDF and BUFR MLE distributions is due to the σo averaging, assuming 

two measurements for HDF and one for BUFR. However, in the real case, where HDF 

contains more than four measurements and BUFR typically four, the results, although similar, 

present some differences with respect to the theoretical case. In particular, the correlation is 

significantly smaller (0.5) compared to the simple theoretical example (0.7). 

In this section, we simulate HDF and BUFR MLEs, assuming a realistic number of 

measurements for both sets. The simulation is done to show that the theoretical demonstration 

can be extrapolated to the real case by using a larger number of σo in both HDF and BUFR 

products. We also simulate the effects of varying the number of σo on the MLE distributions. 
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3.2.1 Simulation procedure 

 

We use the JPL selected winds of the BUFR files as truth to simulate two sets of 

measurements. The first set simulates the HDF product, using realistic noise values and 

number of measurements per beam. Then, similar to the real data, these measurements are 

averaged per beam to generate the second set which simulates the BUFR product. The more 

HDF observations per beam in a particular WVC that we simulate, the larger the 

measurement noise that we assume for each individual measurement, such that the 

information content is the same in each simulated HDF and BUFR WVC. Once we have 

simulated both sets of measurements, we invert them, using equation 1, to derive the 

simulated MLE. 

 

Number of σº 

In order to adequately simulate both products we have to use a realistic number of σº per 

WVC. In the case of the HDF simulation, we produce a variable number of measurements 

depending on the WVC number and beam. 

Figure 2 shows the histogram of the number of measurements per WVC and beam for one day 

of HDF data. [Note that because of symmetry, both the fore-beam and the aft-beam 

histograms are identical; therefore, only one of them is shown in the Figure]. Plot a 

corresponds to WVC number 12 and plot b to WVC number 55. It is clearly discernible from 

the different distributions of plots a and b that the number of measurements in HDF varies 

from one WVC to another. Moreover, these distributions are broad, indicating that the number 

of measurements is considerably varying in each WVC as well. However, to simplify the 
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simulation, we have chosen the number of σº corresponding to the peak of each distribution 

as the fixed value which will represent the number of σº for each particular WVC and beam. 

As explained above, the BUFR measurements are produced by averaging the HDF 

measurements per beam. Therefore, the number of σº in BUFR will depend on the number of 

σº in HDF. Since we perform this simulation in the sweet parts of the swath, we use 4 σº per 

WVC for BUFR. 

 

3.2.2 Simulation results 

 

In order to provide a realistic simulation, we use the Kp and the wind distributions as 

provided in the JPL product together with the realistic number of measurements for HDF and 

BUFR computed in section 3.2.1. 

Figure 3 shows the contour plot of the two-dimensional histogram of the simulated BUFR 

MLE versus the simulated HDF MLE. Although the distribution differs somewhat from the 

real case (Figure 1), it is clear that we have successfully reproduced the same small 

correlation (about 0.5 in both cases) by simply assuming a different number of measurements 

(more σº in HDF than BUFR). The remaining differences between the simulated and the real 

distributions, which can be explained by many issues, are analyzed in detail in section 3.3. 

Nevertheless, it is clear from the results that the simulation is a good reflection of reality. 

Therefore, since averaging σo from HDF to BUFR is the main assumption of the realistic 

simulation, we conclude that this is the main cause of the low correlation of the MLE values 

(see Figure 1 or Figure 3). 
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The main difference between the real/simulated distributions and the theoretical case is in the 

mean MLE values. The ratio between HDF and BUFR mean values is above 1.5 in the former 

and unity in the latter (see section 3.1). In order to see the effects of extrapolating the 

theoretical case to a higher dimensional order of the measurement space for HDF and BUFR, 

we also perform a more constrained simulation1. The latter gives similar ratio between HDF 

and BUFR mean MLEs to that of the realistic simulation, i.e. about 1.5. The reason for this 

difference between the real/simulated distributions and the theoretical ones is that, in the 

theoretical case, the solution is a point in the multi-dimensional space while, in the simulation 

(also for real data), the solution is a multi-dimensional folded surface with a strong non-linear 

behavior. This non-linearity may contribute to the change in the MLE properties when going 

from HDF to BUFR.  

The general results of the constrained simulation are similar (not shown) to those of the 

realistic simulation (see Figure 3). This shows that the constraining assumptions have no 

significant effect on the low correlation of the MLE values. Therefore, this result validates the 

assumptions used in the theoretical example. 

 

MLE distribution dependence on number of σº 

Figure 4 is similar to Figure 3. We use the same simulation procedure but in this case we fix 

the number of σo used in the simulated HDF instead of using a realistic number. In the case of 

fixing the number of HDF measurements to 5 (plot a), one beam has two σo measurements 

and the rest of the beams have only one each. In the case of 6 σo measurements (plot b), two 

                                                           
1 This simulation includes two additional constraints based on the assumptions 2 and 4 (see section 3.1), i.e. we 
consider only one truth (origin in the theoretical case), which in this case is an eastward wind of 7.8 m/s and we 
use fixed Kp values for both HDF and BUFR, and fixes the number of measurements in HDF and BUFR, i.e. 
N=8 and M=4 respectively. 
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beams have two measurements each and two beams have only one each. Analogous 

explanation goes for the cases of 7 (plot c) and 8 (plot d) measurements. [Note that the 

different combinations of measurements / beams (e.g. in the case of 5 σo, you may use two 

measurements for the fore inner, the fore outer, the aft inner or the aft outer beam) do not 

affect the two-dimensional histograms (not shown)]. 

The plots in Figure 4 clearly show a decreasing correlation value with increasing number of 

HDF measurements (from 0.78 in plot a to 0.53 in plot d). Moreover, this effect is also seen in 

the shapes of the two-dimensional histograms, which are progressively smeared away from 

the diagonal. The correlation value of the theoretical case (0.7) is in between the correlation 

values of plots a (0.78) and b (0.66). This suggests that the decorrelation of the MLE when 

going from N=2 to M=1 is similar to the one from N=5 or 6 to M=4. The two-dimensional 

histogram in plot d is very similar to that of Figure 3. Both histograms present as well similar 

correlation values. This is due to the fact that the realistic distribution of the number of σo 

measurements used for HDF in Figure 3 contains 8 σo measurements per WVC on average for 

the sweet parts of the swath. We can therefore interpret Figure 4 as a transition from the 

theoretical case to reality. 

Figure 5 shows separately the distributions (one-dimensional histograms) of simulated BUFR 

and HDF MLEs. The different plots correspond to the different number of measurements 

simulated in HDF, in the same way as for Figure 4. As explained at the beginning of section 

3, the BUFR simulated measurements are a beam averaging of the HDF simulated 

measurements. Figure 5 clearly shows that the MLE distribution for simulated BUFR is 

invariant to the number of HDF measurements used prior to the BUFR averaging. This is an 

expected result since the number of BUFR simulated measurements per WVC is always the 

same (4, one for each beam). However, the distribution of HDF MLE is significantly 
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changing with the number of simulated HDF measurements, increasing its peak and mean 

value with increasing number of simulated measurements (see evolution from plots a to d). 

Since the MLE value is a measure of the distance from the measurements to the GMF, this 

distribution change indicates that the more measurements (or the more dimensions in the 

measurement space) we use, the lower the probability to be close to the solution or GMF. As 

discussed in the first simulation, the dependence of the mean MLE value on the number of 

measurements is due to the non-linearities in the GMF. 

The decorrelation between HDF and BUFR MLE is explained by the change in the 

distribution characteristics of the latter. Although the non-linear behavior of the GMF is 

affecting the MLE distributions, it is clear from the simulation results that the decorrelation is 

mainly due to a much smaller number of σo used in the inversion for BUFR compared to HDF 

(about half, since typically BUFR contains 4 and HDF 8 measurements). 

In section 3.1, we demonstrate the change in the MLE distribution characteristics when 

averaging from a two-dimensional measurement space to a one-dimensional one. With this 

simulation we are able to better characterize the evolution of the MLE distributions when 

encountering higher dimensional measurement spaces. 

 

3.3 Detailed analysis of MLE differences: real versus simulated 

 

In sections 3.1 and 3.2, we clearly show the change in the MLE distribution characteristics 

when averaging the σo information (from HDF to BUFR), which leads to a small correlation 

of the HDF and BUFR MLEs. However, some differences are visible in the simulated MLE 
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distributions compared to the real MLEs. In this section, we perform a deeper analysis of 

these differences. 

 

Distributions 

Similar to Figure 5, Figure 6 shows the one-dimensional histograms of HDF and BUFR 

MLEs but for real (plot a) and simulated (realistic) (plot b) data. Note that the shape of the 

simulated HDF and BUFR distributions is different compared to the real distributions. In 

particular, the mean value of the BUFR distributions is larger for the simulated MLE than for 

the real MLE. Moreover, the SD value of the HDF distributions is significantly larger for the 

real compared with the simulated MLE. We also note that in the HDF real data there is a 

larger accumulation of values in the vicinity of zero MLE. 

 

Mean values versus node number and wind speed 

In order to better understand these differences in the MLE distributions, we study the 

behavior of the mean simulated and real MLE as a function of wind speed and cross-track 

location. 

Figure 7 shows the mean MLE surface as a function of wind speed and WVC number for the 

HDF (plot a) and BUFR (plot b) real data. The noise in the MLE surfaces, caused by 

geophysical effects (such as rain) and/or small amount of data (at high winds), is filtered out. 

The MLEs used in this Figure correspond to the MLEs of the selected solutions provided in 

both QuikSCAT data products (HDF and BUFR). Figures 8a and 8b show the same surfaces 

as Figures 7a and 7b, respectively, but for simulated data. The MLEs used in this Figure 
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correspond to the MLEs of the 1st rank solutions provided by our inversion software. [Note: 

Figure 7 looks almost identical if we use the 1st rank solution instead of the selected solution. 

The reason to show the selected solution Figure is because it is used for QC purposes in 

section 4.] 

In HDF, there is a slight increase of the surface with increasing distance to nadir (Figures 7a 

and 8a). The reason for this increase lies in the inversion. As the inversion is a non-linear 

process, the scaling (linear correction), that is, the Kp noise (see equation 1), is not sufficient 

to compensate for the increase in the MLE due to the increase in the number of σº. 

Nevertheless, the mean MLE surfaces show that this effect is minor. Note that the increase is 

stepwise in the simulated data (Figure 8a) and not monotonic as for real data (Figure 7a) 

because of the approximation in the number of σº made in the simulation of HDF data, that is, 

we use a constant number of measurements in each WVC while in reality the number of 

measurements per WVC varies (see Figure 2). 

In BUFR, there is no increase in MLE with increasing distance to nadir (Figures 7b and 8b), 

as the number of σº is kept constant for all WVCs. As for the HDF case, the simulated MLE 

behaviour across track (Figure 8b) compares well with the real case in BUFR (Figure 7b). 

If we compare the mean MLE behaviour as a function of wind speed between the real (Figure 

7) and the simulated (Figure 8) cases, we see a large discrepancy at low speeds. In reality, the 

MLE increases with decreasing speed while in the simulated case the MLE decreases with 

decreasing speed. 

The reason for this MLE increase in the real case is that the observation error (Kp) is 

underestimated for low wind speeds. From equation 1, an underestimation in the Kp 

(denominator term) will in turn produce an increase in the MLE. The Kp noise contains two 
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terms: the instrument noise and the geophysical noise. [6] provide a physically-based model 

for the NSCAT backscatter observation error. They find that for low wind speed, the largest 

uncertainty lies in the spatial variability of the geophysical target (geophysical noise). Since 

the different beam and polarization measurements in a WVC do not sample exactly the same 

area, the geophysical collocation error variability becomes substantial at low backscatter 

levels. 

However, in the simulated case, the Kp is considered as a true value and therefore we would 

expect no increase or decrease in the MLE value at low wind speeds. This is however not the 

case. The problem lies in the inversion and, among others, in the fact that we assume that the 

measurement noise is proportional to the true value. The latter leads to a Kp which is 

proportional to σsi
o (simulated σo from the GMF) in the denominator of equation 1. [13] 

explains on page III-29 how proportional errors cause positive bias in the solution (after 

inversion). This positive bias will in turn produce a decrease in the MLE. Figure 9 illustrates 

the problem in the case of a two-beam measurement system (QuikSCAT has four beams, but 

for simplicity we draw a 2D case). The solid curves represent the solution space. The 

diamond represents the pair of “true” measurements, which are the starting point in the 

simulation process. The solid circle around the diamond represents the “true” measurement 

noise (Kpt). Using this Kpt we simulate the measurement pair (triangle inside the solid circle). 

The dashed circle represents its corresponding estimated noise (Kpm). After inversion, we get 

a positively biased solution (star) which has its proportional noise (Kps) represented by the 

dotted circle. As Kps increases significantly, the MLE decreases (Kps is the denominator of 

equation 1) and this effect is more acute as we approach the origin corresponding to lower 

speeds. 
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Finally, it is clearly discernible that the mean MLE at mid and high speeds is significantly 

larger for simulated data compared to real data (see the surface plateau level of Figure 8 

compared to Figure 7). This means that there is an overestimation of the Kp (or measurement) 

noise at these speed regimes. Since the largest uncertainty at these speeds lies in the 

instrument noise and not in the geophysical noise, we conclude that there is probably an 

overestimation of the instrument noise. 

 

Main differences 

According to the analysis, we conclude that the remaining differences between the simulated 

and the real distributions can be attributed to the following: 

• The simulation of the number of σº per WVC and beam in HDF is just a rough 

approximation. In the real data a WVC can contain a variable number of σº (see Figure 2) 

and in the simulation we have fixed this number. 

• The different behaviour of the real and simulated MLEs at low speeds as discussed above 

(see Figures 7 and 8). In the real data, the estimated Kp values, and more specifically the 

geophysical noise values, are underestimated. 

• An overall overestimation in the real data of the estimated Kp values (except at low winds 

where the opposite occurs), more specifically, the instrument noise values. This is 

deduced from the higher mean MLE values of both HDF and BUFR simulated 

distributions (Figure 8) compared to the mean values of the real distributions (Figure 7). 

There may be other reasons that could cause minor differences in the distributions, such as 

processing of eggs or composites, i.e., for real data HDF uses eggs and BUFR composites 
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(see section 2), whereas for simulated data we treated both HDF and BUFR as composites. 

Nevertheless and as discussed in the previous section, these differences are not so relevant as 

the simulation is a good reflection of reality. 

 

4 Wind Retrieval and Quality Control skills in BUFR versus HDF 

 

In the previous section, we have shown how different the MLE distributions are in HDF and 

BUFR. In the BUFR product, σo measurements are combined to result in only 4 independent 

σo observations. In HDF on average 8 σo measurements are available per WVC in the sweet 

swath. This data reduction could cause information in the σo measurements to be lost. As 

such, the poor BUFR and HDF MLE comparison should be taken seriously. The MLE is the 

residual parameter output from wind retrieval and is very important for Quality Control ([5], 

[6], [7], and [8]). Therefore, in this section, we investigate in some detail the wind retrieval 

and QC performance properties of SeaWinds BUFR as compared to HDF. 

 

4.1 Wind retrieval 

 

Figure 10 shows the two-dimensional histograms of BUFR winds versus HDF winds (upper 

plots), BUFR versus ECMWF (mid plots) and HDF versus ECMWF (bottom plots). The left 

plots correspond to the histograms of wind speeds and the right plots to the histograms of 

wind directions. Both BUFR and HDF retrieved winds correspond to the 1st rank solution. 
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From the upper plots we note that the BUFR and HDF retrieved winds are not identical, 

although very similar. Plot a) shows almost no bias in speed and a very small STD (0.58 m/s). 

Plot b shows a typical effect of comparing 1st rank solutions, which is the secondary 

distribution around 180°. This is due to the fact that 1st and 2nd rank solutions (often with very 

similar wind speed but wind direction 180° apart) can have very similar MLE values and 

therefore be switched from one data product to the other. This effect leads to very high 

directional SD values. Still, we can see from the correlation factor (0.87) that the retrieved 

directions are similar. 

Looking at the mid and the bottom plots, we can see almost no difference between HDF and 

BUFR when compared to ECMWF winds. Plots c) and e) show almost identical wind speed 

distributions with almost the same bias and STD. Plots d) and f) show very similar wind 

direction distributions with almost the same correlation factor. 

Therefore, we conclude that the difference in the MLE distributions is not affecting the 

quality of the retrieved winds. 

 

4.2 Quality Control 

 

The mean MLE distributions of both formats are similar (see Figure 7). Since the mean MLE 

distribution is used for determining the QC of HDF data (see [7]), it seems reasonable to test 

the same QC procedure for BUFR. 
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4.2.1 Methodology 

 

The method, as described by [7], consists of normalizing the MLE with respect to the wind 

speed and the node number (or cross-track location). For a given wind speed and node 

number, we compute the expected MLE. Then we define the normalized residual as: 

Rn = MLE / <MLE>          (8) 

where MLE is the maximum likelihood estimator of a particular wind solution (given by the 

inversion) and <MLE> is the expected MLE for that particular WVC (node number) and wind 

solution. The <MLE> is a surface fit to the mean MLE surface (Figure 7). This fit is made in 

order to be able to extrapolate to higher wind speeds. The computation of the <MLE> for 

BUFR data (see Appendix) is slightly different than for HDF data since the surfaces are 

somewhat different (compare Figure 7a and 7b). 

[7] found that the QC procedure works slightly better when using the MLE information of the 

selected solution rather than the 1st rank solution. Therefore, similar to the HDF case, the Rn 

is computed with the MLE of the selected solution given in the BUFR product. 

Following the definition of Rn (see equation 8), an Rn threshold, which separates the good 

quality winds from the poor quality winds, needs to be defined. The same wind-dependent Rn 

threshold as defined for HDF (see [7]) is used for BUFR data. It is a parabolic threshold with 

a maximum Rn value of 4 at 5 m/s, which reaches a value of 2 at 15 m/s and then remains 

constant for higher wind speed values. The reference wind speed is the selected wind 

solution. 
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The QC by Rn works as follows. The Rn (equation 19) of the selected solution of any WVC is 

computed. If the Rn is lower or equal to the threshold, the WVC is accepted; otherwise, the 

WVC is rejected. We test the QC procedure against ECMWF and SSM/I collocations. 

 

4.2.2 Results 

 

The QC procedure should be optimized in order to achieve the following goals: maximum 

low-quality data rejection (including rain contaminated WVCs) and minimum good-quality 

data rejection. Table 1 summarizes the results of the BUFR QC compared with the HDF QC 

(the latter adopted from [7]). As in [7], the results correspond to the sweet parts of the swath 

(nodes 9 to 28 and 49 to 68). The total amount of data used is over 3 million for both BUFR 

and HDF. 

The first column shows the percentage of accepted and rejected data. We note a larger 

percentage of rejections in BUFR (6.7%) than in HDF (5.6%). 

The second column shows the average Root Mean Square (RMS) of wind vector difference 

between the QuikSCAT selected winds and the ECMWF winds (RMS-ECMWF). The RMS-

ECMWF is providing information about the quality of the QuikSCAT data, i.e. the larger the 

RMS-ECMWF value the lower the quality of the retrieved wind is according to ECMWF. The 

difference in RMS-ECMWF between the accepted and rejected solutions is 4 m/s in HDF, 

while in BUFR is slightly lower than 3 m/s. Therefore, the excess of rejections in BUFR with 

respect to HDF (see column 1) is mostly concentrated at low RMS-ECMWF values, which in 
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turn makes the mean RMS-ECMWF smaller (4.92 m/s in BUFR, while 6.24 m/s in HDF). 

This indicates a better performance of the HDF QC with respect to the BUFR QC. 

The third column shows the percentage of accepted and rejected “rainy” data. We consider 

“rainy” data, when SSM/I rain rate is above 6 mm/hr. [7] investigated the quality of 

QuikSCAT winds in the presence of rain. They found that for SSM/I rain rate above 6 mm/hr, 

the radar backscatter is mainly coming from the rain and therefore the quality of the retrieved 

winds is generally unacceptable. Therefore, the QC is expected to maximize rain rejection. 

This is indeed what occurs, since most of the “rainy” WVCs are rejected. However, the 

percentage of rejections is slightly higher for HDF (87.3%) than for BUFR (83.9%), denoting 

again a slightly better performance of the HDF QC. 

As for HDF, in the region close to nadir (nodes 29 to 48), the results (not shown) show a 

slightly worse skill of the QC compared with the sweet parts of the swath. This is due to the 

poorer azimuth diversity in the σº measurements of each WVC at the nadir region. 

Note that, as for HDF, we have tested different thresholds including: 1) different parabolas 

with maxima and minima at different Rn/Speed locations; 2) a constant value for all wind 

speeds; and 3) a constant value for all speeds but with a step (change in value) at different 

wind speed locations. None of them have given better results than the one defined above 

according to our statistics and the two previously mentioned goals. 

In general, the BUFR QC works fine, although its performance is slightly worse than the HDF 

QC. Therefore, the properties of the MLE as a QC indicator are almost independent of the 

data format used, despite the important differences between the MLE distributions discussed 

in section 3. In other words, anomalies like rain cause similar effects in both HDF and BUFR 

σo products, that is, HDF and BUFR are strongly correlated in such cases. 
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5 Conclusions 

 

A comparison between HDF and BUFR MLE data shows that both MLE distributions are 

poorly correlated. It is assumed that the different level of averaging of the data in HDF and 

BUFR is the main cause. 

In order to set a QC procedure for QuikSCAT BUFR data using the experience of the recent 

QC procedure developed by [7] for QuikSCAT HDF data, a comprehensive characterization 

of the MLE is performed. 

A very simple example is solved theoretically to predict the MLE behavior with respect to the 

data format used. In this theoretical case, for simplicity, HDF is assumed (among other 

assumptions) a measurement system providing two observations and BUFR a system 

providing one (combined) observation. We show how the MLE distribution changes, due to 

the σo averaging that is performed when going from HDF format to BUFR format. As a 

consequence of this change, the correlation between both MLE distributions is 0.7. 

The results of the comparison between the HDF and BUFR real data are close to the 

theoretical case. However the MLE distribution characteristics and the correlation values are 

somewhat different. In particular the correlation value for real data is 0.5. We postulate that 

the main difference between theory and reality is the different number of measurements used 

and we perform a simulation to check it. 

First, a simulation, which includes a realistic number of σo observations and realistic noise 

values for both HDF and BUFR formats, is performed. The MLE distributions of this realistic 
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simulation compare well with the real distributions. Indeed, the simulated correlation value 

between both formats is the same as in reality (about 0.5). Since the main assumption in the 

simulation is the change in number of measurements when simulating BUFR σo from HDF 

σo, we conclude that the low correlation of the MLE distributions of both formats is due to the 

σo averaging. 

In order to understand the differences between the mean MLE distributions of the 

simulated/real data and the theoretical case, we performed a more constrained simulation. 

This simulation is simply an extrapolation of the theoretical case to a higher dimensional 

measurement space. The results of this simulation are similar to those of the realistic 

simulation. The differences between the simulated (and real) and the theoretical distributions 

are explained by the fact that, in contrast with the theory where a single point is used as 

solution, in the simulation (and reality) the solution is a multi-dimensional surface with highly 

non-linear behavior. The good agreement between the realistic simulated MLE distributions 

and the “constrained” simulated distributions validates the assumptions used in the theoretical 

case. 

Further simulations show how the MLE distributions change as a function of the number of 

observations taken. The higher the difference in the number of HDF and BUFR observations, 

the lower the correlation and higher the mean MLE value difference between the two 

products. 

The remaining differences between the realistic simulation and reality are analyzed in detail. 

Misestimations of the real measurement noise and simplification in the computation of the 

number of measurements for both formats in the simulation are pointed out as the main cause 

for these differences. 
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Collocations of HDF and BUFR winds with ECMWF winds show that the quality of the 

retrieved winds of both formats is very similar. As such, the different MLE behavior is not 

affecting the quality of the wind retrievals. 

Finally, we use the same QC procedure for BUFR and for HDF. The skill of the BUFR QC is 

very similar to the HDF QC. Therefore, and despite the different MLE distribution of the 

BUFR product compared to HDF, the MLE turns out to be a good QC indicator regardless of 

the data format. This in turn shows that in the presence of rain (or other anomalies that 

produce low quality winds) HDF and BUFR are strongly correlated indeed. 

As such, despite the smaller information content of the BUFR product due to the averaging 

procedure, its usefulness for meteorological applications is very similar to the HDF product. 

 

Appendix: <MLE> surface fit for JPL-retrieved winds in BUFR 

format 

 

For HDF, a simple fit to the filtered mean MLE surface (see Figure 7a) is performed, by 

finding the MLE dependence on wind speed for a certain node and assuming that the shape of 

this function is nearly constant over all nodes of the inner swath (see [7]). Looking at the 

filtered mean MLE surface for BUFR (see Figure 7b), we note that assuming a constant shape 

of the MLE dependence on wind speed over all nodes of the inner swath is not valid anymore. 

In this case, we fit a Gaussian + 2nd order polynomial function to the filtered mean MLE for 

each node of the inner swath separately. Then, we fit a 2nd order polynomial function to the 
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evolution of each coefficient of the previous function with respect to the node number. 

Therefore, the 2D function which well fits the filtered mean MLE surface is the following: 
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where <MLE> is the expected MLE, v is the wind speed and n the node number. 

The coefficient values are the following: 

A00 =  0.55000; A01 =  0.00000; A02 =  0.00000 

A10 =  1.50000; A11 =  0.00000; A12 =  0.00000 

A20 =  2.75000; A21 =  0.00000; A22 =  0.00000 

A30 =  0.21210; A31 = -2.49E-3; A32 =  3.02E-5 

A40 = -7.41E-3; A41 =  3.13E-4; A42 = -4.08E-6 

A50 =  1.18E-4; A51 = -4.76E-6; A52 =  6.24E-8 
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List of Figures 
 

Figure 1 Contour plot of the two-dimensional histogram of the BUFR MLE versus the HDF 

MLE. N is the number of data; mx and my are the mean values along the x (HDF) and y 

(BUFR) axis, respectively; m(y-x) and s(y-x) are the bias and the standard deviation with 

respect to the diagonal, respectively; and cor_xy is the correlation value between the HDF and 

the BUFR MLE distributions. The contour lines are in logarithmic scale: each step is a factor 

of 2 and the lowest level (outer-most contour line) is at N/4000 data points. 

Figure 2 Normalized histogram of the number of sigma0 for WVC number 12 (plot a) and 55 

(plot b). The solid line corresponds to the inner swath beams (fore or aft) and the dotted line 

to the outer swath beams. 

Figure 3 Same as Figure 1 but for the realistic simulation. 

Figure 4 Same as Figure 3 but using a varying number of measurements in the HDF 

simulation: a) 5; b) 6; c) 7; and d) 8. 

Figure 5 One-dimensional histogram plots of the MLE distributions of Figure 4. The number 

of measurements used in the HDF simulation is: a) 5; b) 6; c) 7; and d) 8. mh and mb are the 

mean values of the HDF and BUFR distributions, respectively; sh and sb are the standard 

deviation values of the HDF and BUFR distributions, respectively. 

Figure 6 One-dimensional histogram plots of the HDF and BUFR MLE distributions for real 

data (a) and the realistic simulation (b). The legend is the same as in Figure 5. 
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Figure 7 Mean MLE versus wind speed and node number for real data: (a) HDF (adopted 

from Figure 3a of [7]) and (b) BUFR. The speed binning is 1 m/s and the node binning is 1. 

Figure 8 Mean MLE versus wind speed and node number for simulated data: (a) HDF and (b) 

BUFR. The speed binning is 1 m/s and the node binning is 1. 

Figure 9 schematic illustration of the problem in a 2D measurement space 

Figure 10 Two-dimensional histogram of BUFR winds versus HDF winds (plots a and 

b),BUFR winds versus ECMWF winds (plots c and d) and HDF winds versus ECMWF winds 

(plots e and f). The left plots correspond to wind speeds (bins of 0.4 m/s) and the right plots to 

wind directions (bins of 2.5°). The legend is the same as in Figure 1. 

Table 1 QC results BUFR / HDF. 
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Figure 1 Contour plot of the two-dimensional histogram of the BUFR MLE versus the HDF MLE. N 
is the number of data; mx and my are the mean values along the x (HDF) and y (BUFR) axis, 
respectively; m(y-x) and s(y-x) are the bias and the standard deviation with respect to the diagonal, 
respectively; and cor_xy is the correlation value between the HDF and the BUFR MLE distributions. 
The contour lines are in logarithmic scale: each step is a factor of 2 and the lowest level (outer-most 
contour line) is at N/4000 data points. 
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Figure 2 Normalized histogram of the number of sigma0 for WVC number 12 (plot a) and 55 (plot b). 
The solid line corresponds to the inner swath beams (fore or aft) and the dotted line to the outer 
swath beams. 
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Figure 3 Same as Figure 1 but for the realistic simulation. 
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Figure 4 Same as Figure 3 but using a varying number of measurements in the HDF simulation: a) 5; b) 6; c) 7; and 
d) 8. 
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Figure 5 One-dimensional histogram plots of the MLE distributions of Figure 4. The number of measurements used 
in the HDF simulation is: a) 5; b) 6; c) 7; and d) 8. mh and mb are the mean values of the HDF and BUFR 
distributions, respectively; sh and sb are the standard deviation values of the HDF and BUFR distributions, 
respectively. 
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Figure 6 One-dimensional histogram plots of the HDF and BUFR MLE distributions for real data (a) and the 
realistic simulation (b). The legend is the same as in Figure 5. 
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      a) 

 
       b) 

 
Figure 7 Mean MLE versus wind speed and node number for real data: (a) HDF (adopted from Figure 
3a of [7]) and (b) BUFR. The speed binning is 1 m/s and the node binning is 1. 
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      a) 

 
       b) 

 
Figure 8 Mean MLE versus wind speed and node number for simulated data: (a) HDF and (b) BUFR. 
The speed binning is 1 m/s and the node binning is 1. 
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Figure 9 Schematic illustration of the problem in a 2D measurement space 
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       e)                                                                 f) 
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Figure 10 Two-dimensional histogram of BUFR winds versus HDF winds (plots a and b),BUFR winds versus 
ECMWF winds (plots c and d) and HDF winds versus ECMWF winds (plots e and f). The left plots correspond 
to wind speeds (bins of 0.4 m/s) and the right plots to wind directions (bins of 2.5°). The legend is the same as 
in Figure 1. 
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Tables 
 

 

 

 

 
Table 1 QC results BUFR / HDF 

 
 % of Total Mean RMS 

(m/s) 
RR > 6 

(%) 
Accepted 93.3 / 94.4 2.07 / 2.24 16.1 / 12.7 

Rejected 6.7 / 5.6 4.92 / 6.24 83.9 / 87.3 
 
Note : RMS is referred to as the average RMS of vector difference between JPL-retrieved winds and 
ECMWF winds in m/s; and RR is the SSM/I rain rate in mm/hr. 



 46

 

 

Biographies 
 

Marcos Portabella received his B.Sc. degree in Physics in 1994, 
with a specialization in atmospheric physics, from the University of 
Barcelona, Barcelona, Spain, and the M.Sc. in Space Studies in 
1995, with a specialization in Remote Sensing, from the Institute of 
Space Studies of Catalonia, Barcelona, Spain. 

He later worked at the European Space Agency (ESA) on wind 
retrievals from satellite radar systems, such as NASA Scatterometer 
(NSCAT), ESA scatterometers (ERS-1 and ERS-2) and synthetic 
aperture radars (SAR). He is currently with the Royal Netherlands 
Meteorological Institute (KNMI), de Bilt, The Netherlands, where he 

is working on data interpretation, inversion and quality control of SeaWinds scatterometer, 
flown aboard the NASA satellite QuikSCAT. 

 

Ad Stoffelen was born on February 25, 1962, in the Netherlands. He 
received the M.Sc. degree in physics in 1988 from the Technical 
University of Eindhoven, The Netherlands, and the Ph.D. degree from 
University of Utrecht, Utrecht, The Netherlands. 

He is currently with the Royal Netherlands Meteorological Institute 
(KNMI), de Bilt, The Netherlands, and has worked on scatterometer 
data interpretation, inversion, calibration, validation, quality 
monitoring, and assimilation in global and regional weather forecast 
models. Other involvements include the European Doppler wind lidar 

in space program, and ozone data assimilation. 

 


