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SUMMARY 
 

Scatterometer sea-surface wind observations are being successfully assimilated into Numerical 
Weather Prediction (NWP) models. The quality of the winds retrieved from the new SeaWinds 
scatterometer (onboard QuikSCAT) depends on the subsatellite cross-track location. In particular, 
the poor azimuth separation or diversity between views in the nadir region results in poor quality 
winds. In the QuikSCAT nadir region, where the local cost function minima are broad, the use of 
the standard procedure results in arbitrary and inaccurate winds. A new scheme, which accounts 
for broad cost function minima by allowing more ambiguous wind solutions, i.e., a multiple 
solution scheme (MSS), is proposed as alternative to the standard procedure. The probability of 
every ambiguous solution of being the “true” wind is empirically derived and used in the 
ambiguity removal procedure to make the scheme flexible enough to accept many wind solutions. 

A comparison between the standard wind retrieval and the MSS procedures at 100-km resolution 
is then performed, using independent model winds for validation. The MSS turns out to be more 
in agreement with the model reference than the standard procedure, especially at nadir. Moreover, 
it shows more spatially consistent and realistic winds by more effectively exploiting the 
information content of the observations. 
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1. INTRODUCTION 
 

The forecast of extreme weather events is not always satisfactory, while their consequences can 
have large human and economic impact. Since many weather disturbances develop over the 
oceans, sea surface wind observations can help to improve the prediction of the intensity and 
position of such disturbances. 

Nowcasting, short-range forecasting and numerical weather prediction (NWP) assimilation can 
benefit from the sea surface wind observations. In this respect, Stoffelen and Anderson (1997a) 
show that spaceborne scatterometers, which are able to provide accurate winds over the ocean 
surface, have a beneficial impact on analyses and short-range forecast, mainly due to 
improvements on the sub-synoptic scales. Moreover, the impact of assimilating sea surface winds 
into NWP models significantly depends on the data coverage. Stoffelen and Van Beukering 
(1997) and Undén et al. (1997) show a much more positive impact by doubling the sea surface 
wind data coverage. 

The SeaWinds instrument onboard QuikSCAT satellite (launched in June 19, 1999) is a conical-
scanning pencil-beam scatterometer. It uses a rotating 1-meter dish antenna with two spot beams, 
an H-pol beam and a V-pol beam at incidence angles of 46º and 54º respectively, that sweep in a 
circular pattern. The antenna radiates microwave pulses at a frequency of 13.4 GHz (Ku-Band) 
across a 1800-km-wide swath centered on the spacecraft’s nadir subtrack, making approximately 
1.1 million 25-km resolution ocean surface wind vector measurements and covering 90% of the 
Earth’s surface every day. 

The SeaWinds swath is divided into 76 equidistant across-track wind vector cells (WVCs) or 
nodes numbered from left to right when looking along the satellite’s propagation direction. The 
nominal WVC size is 25 km x 25 km, and all backscatter measurements centered in a WVC are 
used to derive the WVC wind solutions. Due to the conical scanning, a WVC is generally viewed 
when looking forward (fore) and a second time when looking aft. As such, up to four 
measurement classes (called “beam” here) emerge: H-pol fore, H-pol aft, V-pol fore, and V-pol 
aft, in each WVC. Due to the smaller swath (1400 km) viewed in H-pol at 46º degrees incidence, 
the outer swath WVCs have only V-pol fore and aft backscatter measurements. For more detailed 
information on the QuikSCAT instrument and data we refer to Spencer et al. (1997), JPL (2001), 
and Leidner et al. (2000). 

In comparison with previous scatterometers, the SeaWinds system has a much higher coverage 
and, as such, is potentially very useful for data assimilation in NWP models. However, because 
of its rotating mechanism, the pattern of azimuth angles in a single SeaWinds WVC varies across 
the subsatellite track. As reported by Portabella and Stoffelen (2002a) and Stiles et al. (2002), the 
quality of the retrieved winds depends on the azimuth angle separation among beams (or views), 
i.e. on the azimuth diversity. The poorer the azimuth diversity, the lower the quality of the 
retrieved winds is. In particular, the nadir region of the QuikSCAT swath has poor azimuth 
diversity, i.e. inner and outer views are close in azimuth and fore and aft views are close to 180° 
apart. This region represents a considerable portion of the QuikSCAT inner swath, i.e. about 500 
km. Therefore, in order to successfully assimilate QuikSCAT winds into NWP models, additional 
effort is required to improve the wind retrieval in the nadir region. 

In section 2 of this paper we present the wind retrieval problem of scatterometers, in particular of 
QuikSCAT. The standard wind retrieval and the Multiple Solution Scheme (MSS) procedures are 
presented in sections 3 and 4, respectively. In section 5, a comparison between the two 
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procedures is performed at 100-km resolution. Then, the need for an effective Quality Control 
(QC) procedure (at low resolution) is discussed in section 6. Finally, the conclusions and 
recommendations are presented in section 7. 

 

2. COST FUNCTION 
 

In remote sensing, the process of deriving the best estimate of one or more geophysical state 
variables for a given set of observations, allowing for observation errors, is called inversion. 
Among the several approaches for inverting remotely sensed variables (see Rodgers 2000), the 
most general one is the Bayesian approach. This approach is also used in scatterometry, where 
the inversion process is highly non-linear. 

Several optimization techniques, which depend on the desired statistical objective, can be applied 
when using the Bayesian approach, including maximum likelihood, maximum posterior 
probability, minimum variance, minimum measurement error, etc. The maximum likelihood 
estimation is the most commonly used technique to invert winds in scatterometry (Pierson 1989; 
Stoffelen 1998). For SeaWinds, the Maximum Likelihood Estimator (MLE) is defined as 
[adopted from JPL (2001)]: 
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where N is the number of measurements, σmi° is the backscatter measurement, σsi° is the 
backscatter simulated through the Geophysical Model Function (GMF) for different wind speed 
and direction trial values, and Kp(σsi°) is the measurement error variance (noise). Strictly 
speaking, when assuming Gaussian errors, a term ))(ln( o

siKp σ  should be added to the right-hand 
side of (1) but this term is not significant and, as such, is not used. [Note: the Kp is usually taken 
as function of either σmi° or σsi°; the latter is chosen to derive winds at 25-km resolution, 
following the MLE definition for QuikSCAT given by the Jet Propulsion Laboratory (JPL). On 
the other hand, recent experiments (see Portabella and Stoffelen 2002b) seem to indicate that, for 
SeaWinds, a Kp dependent on σmi° is slightly better than a Kp dependent on σsi° at 100-km 
resolution; as such, the former is used in section 5.] 

According to the Bayes’ theorem, the MLE value represents the probability of a trial wind vector 
(solution) being the “true” wind. The SeaWinds optimization technique consists of looking for 
the minima of (1), which represent the local solutions with maximum probability of being the 
“true” wind. Since it is computationally expensive to search for minimum MLE in the entire wind 
domain, the following procedure is usually applied in scatterometry: for a particular wind 
direction, the minimum MLE is searched as a function of wind speed since a single well-
determined minimum is usually found;  the same operation is repeated for every wind direction, 
at a step size of typically 2.5°. The resulting minimum MLE as a function of wind direction is 
referred to as MLE cost function. 

In the standard wind retrieval procedure, the MLE cost function is searched for minima. There 
are typically up to four minima, which are called ambiguous wind solutions. A spatial filter or 
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ambiguity removal (AR) scheme is then used to select the observed wind field from the 
ambiguous wind field. 

 

(a) Wind retrieval skill 

The MLE (1) can be interpreted as a measure of the distance between a set of σmi° values and the 
solution σsi° set lying on the GMF surface in a transformed measurement space where each axis 
of the measurement space is scaled by Kp(σsi°) (Stoffelen and Anderson 1997b). The shape of the 
MLE cost function is determined by the σ° modulation of any view and the relative geometry 
among views. By only using the MLE cost function local minima in the retrieval (as in the 
standard procedure), the skill of the wind retrieval is compromised. 

Figure 1 shows an example of the MLE cost function for QuikSCAT as a function of wind 
direction. The diamond symbols indicate the ambiguous wind solutions detected by the inversion 
procedure. The shape of the minima determines the precision of the wind retrieval. The broader 
the minima, the less accurate the retrieved winds are, since we are ignoring the neighbouring 
wind solutions to the minima, which are of comparable probability of being the “true” wind, i.e., 
comparable MLE value. The depths of the minima relative to each other determine in this case 
the likelihood of each ambiguous solution of being the “true” wind and therefore the ambiguity or 
uncertainty of the system. The closer the depth of the secondary minima to that of the primary 
(deepest) minimum and the larger the number of (deep) minima, the more ambiguous the wind 
retrieval is. 

The modulation of the cost function (difference between maximum and minimum in Fig. 1) is 
also important in terms of wind retrieval accuracy. It shows how unlikely the lowest likelihood 
points of the cost function are compared to the highest likelihood points. For example, the low 
GMF modulation at low winds results in a low cost function modulation. In this case, the wind 
direction solutions coming out of the inversion are not so meaningful anymore, since the standard 
procedure is ignoring many cost function points of comparable probability to that of the 
ambiguous solutions. As such, a low cost function modulation corresponds to a low wind 
direction skill1. 

The MLE cost function is an output of the inversion, and as such is reflecting the inherent 
inversion problems. Using the minima of the MLE cost function as the only ambiguous wind 
solutions can lead to poor quality retrievals. As we will see in section 4, if we properly use the 
information on accuracy and ambiguity derived from the MLE cost function (inversion), the wind 
retrieval may improve significantly. 

                                                           
1 Wind direction information is meteorologically less meaningful for low winds. We generally find that the wind 
vector error does not depend on wind speed. 
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Figure 1 Example of MLE cost function for QuikSCAT node number 33. The diamond symbols indicate the locations 
of the minima found by the inversion procedure. 

 

(b) QuikSCAT example 

As already mentioned, the wind retrieval performance decreases in certain regions of the 
QuikSCAT swath. This is an inherent problem of the QuikSCAT inversion, which is reflected in 
the shape of the MLE cost function. 

The example shown in Fig. 1 corresponds to node number 33. This WVC is inside the nadir 
region (WVC numbers 29-48), close to the sweet region (WVC numbers 9-28 and 49-68). As we 
approach the nadir sub-track of the satellite (nodes 38 and 39) and the azimuth diversity 
decreases, the MLE cost function minima tend to become broader and therefore wind retrieval 
less accurate. In contrast, when approaching the sweet region and the azimuth diversity increases, 
the minima become steeper and consequently the wind retrieval more accurate. In the outer 
region (WVC numbers 1-8 and 69-76), the wind vector is not anymore overdetermined since 
there are only two views. The MLE cost function will have most of the times four minima with 
nearly equal and low MLE values. The outer region is therefore the most ambiguous of the 
QuikSCAT swath. The minima in this region will be steep and therefore as accurate as those in 
the sweet swath, except for the nodes at the edges of the swath, where the two outer views are 
close to each other (poor azimuth separation) and therefore broad minima in wind direction are 
again present. A better illustration of the QuikSCAT inversion problem can be found in 
Portabella (2002), where QuikSCAT retrieved winds are compared to ECMWF forecast winds 
over a period of 12 hours. 

The QuikSCAT azimuth diversity smoothly changes with the node number in the inner swath. In 
other words, there is no discontinuity between the sweet and the nadir regions. As such, it seems 
reasonable to consider the sweet swath as well for this study. Therefore, we focus our research on 
improving wind retrieval in the inner swath (sweet + nadir), giving special attention to the nadir 
region. 
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3. STANDARD PROCEDURE 
 

The scatterometer wind retrieval procedure consists of inversion and AR. In this section, we 
describe the standard inversion + AR methodology used in scatterometry. 

 

(a) Inversion 

The MLE-based inversion has already been discussed in section 2. The standard procedure gives 
up to four ambiguous wind solutions, corresponding to the cost function minima. In the process 
of deriving such minima, several parameters can be tuned to improve the inversion in terms of 
ambiguity and quality. An example on how to perform a comprehensive inversion tuning, in this 
case for QuikSCAT, can be found in Portabella and Stoffelen (2002a). The tuning, although 
improving the overall wind retrieval skill, does not solve any of the already discussed inherent 
inversion problems. 

As an interface between the inversion and the AR, a natural step in scatterometry is to convert the 
MLE into a solution probability. According to Bayes theorem and the formulation of the MLE 
explained in section 2, the probability of being the “true” wind given a set of scatterometer 
observations is related by definition to the MLE in the following way: 

2/1)|( MLEo e
k

vp −=σ , (2) 

where v represents the “true” wind and σ° the set of backscatter measurements, and k is a 
normalization factor. The theoretical relationship is therefore an exponential. In other words, as 
the MLE, which represents the misfit of the measurements with the solution lying on the GMF 
surface, increases, the probability of that particular solution being the “true” wind decreases 
exponentially. In reality, some of the contributions to the observation error are not properly 
accounted for (see Portabella 2002; Portabella and Stoffelen 2002c) and, as such, the shape of the 
exponential may differ from the theory. A comprehensive characterization of the solution 
probability for QuikSCAT, based on the empirical methodology described by Stoffelen et al. 
(2000), follows. 

 

Empirical solution probability 

• Instead of the MLE, we use a normalized MLE or normalized residual (Rn) used by 
Portabella and Stoffelen (2001) for QuikSCAT quality control (QC) purposes to avoid the 
already mentioned problem in the measurement noise estimation, such that (2) is re-written 
as: 

lRno e
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vp /

'
1)|( −=σ  (3) 

where k’ is again a normalization factor, and l is the parameter that we want to empirically 
derive. The Rn computation is described in the Appendix. 
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• In order to empirically derive (3), we can ignore the a priori knowledge on the exponential 
behavior of the probability, and make the following assumption: There exists a function ps(x) 
such that, if we have a set of inversion solutions vi with normalized residual Rni, then the 
probability that rank j is the one closest to the true wind, denoted by s=j, is given by 
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• To determine ps(x), we concentrate first on only those cases which have exactly two solutions. 
We process about 2.5 days of QuikSCAT BUFR data and we collocate them with ECMWF 
winds. The closest solution to the ECMWF wind is used as the “selected” wind. Therefore, 
we can construct a two-dimensional histogram showing the relative probability of selecting 
the 1st rank (or the 2nd rank), as a function of Rn1 and Rn2. But according to our assumption, 
by applying (4) with N=2, we find that the probability of selecting the 1st rank is given by 
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• Therefore, by re-arranging (5), the two-dimensional histogram gives an estimate of ps(Rn2)/ 
ps(Rn1) for every combination of Rn2 and Rn1. Figure 2a shows such experimentally 
determined ratios as a function of Rn2 - Rn1, for several values of Rn1. Although for Rn1 = 2.5 
the ratio is somewhat noisy, it is discernible that the ratio is a fairly invariant function of Rn2 - 
Rn1. Since Rn1 is constant and therefore ps(Rn1) is also a constant, this plot is actually 
showing the shape of ps(x). 

• As we know from (3), the shape of ps(x) is exponential and therefore we just have to fit the 
exponential to the experimental function of Fig. 2a by adjusting the l parameter. Figure 2b 
shows the best fit to Fig. 2a, which is represented by the following function: 

4.1/)( x
s exp −=  (6) 

where x is representing the Rn. 

In order to check whether the assumption is correct and the ps(x) we found can be generalized for 
any number of solutions and not only for two, we use the probability function to predict how 
often a certain solution rank corresponds to the “true” solution for a varying number of solutions 
and varying distributions of Rni (remember that we have used only a few constant Rn1 values to 
fit the distributions of Fig. 2a). 

Tables 1 and 2 compare the predicted distributions over the different ranks with the “observed” 
distributions (using the closest to ECMWF) in the sweet and the nadir swaths respectively, for the 
set of about 2.5 days of collocated QuikSCAT-ECMWF data. The number of solutions 
corresponds to the number of minima in the MLE cost function and the solution ranking goes 
from the deepest to the shallowest cost function minimum in ascending order. The first row 
corresponds to the number of data stratified by number of solutions. As shown, when comparing 
the left side to the right side of the columns, the correspondence is remarkable. Therefore, we 
conclude that the assumption is correct and that (6) can be used to determine the solution 
probability. 
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Table 1 Predicted / observed distributions at 25-km (sweet swath). 
 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 331666 233477 317373 882516 

Rank 1 91 / 90 82 / 82 77 / 79 84 / 84 

Rank 2 9 / 10 15 / 15 18 / 17 14 / 14 

Rank 3 - 3 / 3 4 / 3 2 / 2 

Rank 4 - - 1 / 1 0 / 0 

 

 

 
          a)                                                                  b) 

 
Figure 2 Plot a shows the ratio of the number of realizations of Rn2 and the number of realizations of Rn1 as a 
function of Rn2 – Rn1, and for values of Rn1=0.1 (solid), Rn1=1.1 (dashed), and Rn1=2.5 (dotted). Plot b shows the 
single exponential fit to the curves of plot a. 
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Table 2 Predicted / observed distributions at 25-km (nadir swath). 

 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 262753 172506 45638 480897 

Rank 1 82 / 80 79 / 79 65 / 66 79 / 79 

Rank 2 18 / 20 17 / 17 20 / 19 18 / 18 

Rank 3 - 4 / 4 8 / 8 2 / 2 

Rank 4 - - 7 / 7 1 / 1 

 

(b) Ambiguity removal 

In order to understand the importance of the solution probability for AR, a brief description of 
AR follows. The AR is the process of selecting a unique wind vector out of a set of ambiguous 
wind vectors at each WVC. The AR is not computed in a WVC-by-WVC basis but over many 
neighbouring WVCs at once. There are two AR techniques, which are commonly used in 
scatterometry: spatial filters, e.g., median filter for QuikSCAT, and variational analysis. 

 

Median filter 

The median filter used by JPL for QuikSCAT AR (JPL 2001) works as follows: 

• The wind field over an entire revolution of scatterometer data is initialised with the help of an 
NWP model. For each particular WVC, the 1st rank or the 2nd rank wind vector solution, 
whichever is closer to the NWP field, is selected as first guess wind. The number of ranked 
solutions used for initialisation does not necessarily need to be two (see section 4). 

• The wind vectors in a 7 x 7 filter window determine a median vector for the center WVC (see 
definition of median of a group of data in JPL 2001). The median vector is compared with the 
ambiguities in that WVC, and the closest ambiguity to the median is selected for use in the 
next iteration. The entire revolution is filtered in that way. The process continues until it 
converges, i.e., when no new replacements of vectors have been made. 

The MLE (or probability) information is implicitly used in the median filter. The probability can 
play an important role in the selection of ambiguities when used in the initialization and filtering 
processes (this is further discussed in section 4). However, it is not explicitly used in this AR 
technique. 
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Variational analysis 

The variational analysis is a commonly used technique for data assimilation into NWP models. It 
consists of combining the background field (NWP) with the observations, assuming that both 
sources of information contain errors and these are well characterized, to get an analysis field, 
which is spatially consistent and meteorologically balanced. This analysis field can then be used 
for scatterometer AR, that is, to select the closest ambiguous wind solution to the analysis field at 
each WVC. At KNMI, a simple 2D (at surface level only) variational analysis scheme (2D-Var) 
has been specifically developed for AR (Stoffelen et al. 2000), which attempts to minimize the 
cost function 

scat
ob JJxJ +=)(δ , (7) 

where Jb is the background term and Jo
scat is the observation term. It uses an incremental 

formulation with the control variable of wind increments, bxxx −=δ , defined on a rectangular 
equidistant grid. The reference variable xb is the background field, which in 2D-Var is a NWP 
model forecast. The forecast is also used as first guess making the control variable is equal to the 
null-vector at the start of the minimization. 

The Jb is a quadratic term that contains the inverse of the background error covariance matrix. It 
penalizes the deviation from the background field. The Jo

scat expresses the misfit between the 
ambiguous wind vector solutions and the control variable at each observation point. The 
contribution of the wind solutions in each observation point is weighted by the solution 
probability in the following way (adopted from Stoffelen and Anderson 1997a; Stoffelen et al. 
2000): 
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where u and v are the wind component control variables; ui and vi, the wind solution i in zonal 
and meridional components, respectively; εu and εv the corresponding observation errors; and Pi 
the solution probability. Stoffelen and Anderson (1997a) motivate the specification of these 
equations in wind components rather than in backscatter (as in (1)). 

In order to solve the minimization problem, a conjugate gradients method is used, which also 
requires the gradient of the cost function. After convergence, the control variable vector of wind 
increments is added to the background field to obtain the wind analysis. The analyzed wind field 
is then used for AR, as already discussed. 

The solution probability is used explicitly in this AR technique (see Stoffelen et al. 2000). It 
plays a very important role in the minimization and therefore must be characterized in a 
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comprehensive way. In this respect, the empirically derived solution probability, shown in the 
previous section, is essential for a successful use of a variational AR. 

 

(c) Relevance of spatial resolution 

KNMI has a NRT 100-km resolution QuikSCAT wind product, which includes inversion, QC 
and ambiguity removal. Stoffelen et al. (2000) show that the 25-km QuikSCAT winds are often 
too noisy, especially at low winds and in the nadir region. They also show that the averaging of 
the radar backscatter information, and therefore the reduction of the spatial resolution, 
significantly reduces the noise of the inverted winds and increases the rank-1 probability (see also 
Portabella et al. 2001). For applications such as mesoscale NWP data assimilation, where the 
effective analysis resolution is at least 100-200 km, the use of reduced resolution QuikSCAT 
winds is effective. In this respect, several High-resolution Limited Area Model (HIRLAM) 
project countries and ECMWF are now operationally using a reduced resolution QuikSCAT wind 
processing in data assimilation. As such, a comparison between the 25-km and the 100-km 
inversions seems appropriate at this stage, and can in turn help to better understand the 
QuikSCAT inversion problem. [Note that the solution probability formula (6) is also applicable to 
100-km resolution winds; more detailed description on the empirical derivation for 100-km can 
be found in Portabella and Stoffelen 2002a]. 

Table 3 Predicted / observed distributions at 100-km (sweet swath). 
 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 53753 67947 73269 194969 

Rank 1 97 / 96 94 / 93 92 / 92 94 / 93 

Rank 2 3 / 4 5 / 5 7 / 7 5 / 6 

Rank 3 - 1 / 2 1 / 1 1 / 1 

Rank 4 - - 0 / 0 0 / 0 

Table 4 Predicted / observed distributions at 100-km (nadir swath). 
 2 Solutions 3 Solutions 4 Solutions All Solutions 

Number of Data 66618 40478 9344 116440 

Rank 1 83 / 83 93 / 93 78 / 74 86 / 86 

Rank 2 17 / 17 6 / 6 16 / 19 13 / 13 

Rank 3 - 1 / 1 3 / 4 1 / 1 

Rank 4 - - 3 / 3 0 / 0 
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The ambiguity of the system is reflected in the quality of the 1st rank solution: the deeper the 1st 
rank (deepest MLE cost function minimum) in comparison with the secondary minima, the higher 
the likelihood of the corresponding rank-1 wind to be the “true” wind (higher 1st rank skill), i.e., 
the lower the ambiguity. By comparing Tables 1 and 2 to Tables 3 and 4, respectively, one can 
clearly see the substantially higher 1st rank skill of the 100-km product, denoting a smaller 
ambiguity problem, compared to the 25-km product (note the higher percentages of the rank-1 
row in the 100-km Tables in comparison with the 25-km Tables).  

In order to compare both products, we have transformed the MLE cost function into a probability 
cost function by using (6). We invert the already mentioned sets of BUFR data (2.5 days for the 
25-km and 10 days for the 100-km) and keep the probability cost function information. [Note that 
discussing about peaks or maxima in the probability cost function is equivalent to the discussion 
about minima in the MLE cost function]. Figure 3 shows the statistical results of looking at 
several characteristics of the cost function. 

The top plots of Fig. 3 show the histograms of the difference between the maximum (Pmax) and 
the minimum (Pmin) probabilities for the 25-km (plot a) and the 100-km (plot b) products. The 
distributions of Fig. 3b are much broader and shifted towards higher probability difference values 
than the distributions of Fig. 3a, denoting a better probability modulation and therefore less 
accuracy (see section 2(a)) of the 100-km product. Comparing the sweet (solid lines) with the 
nadir (dotted lines), we see a better probability modulation for the former in both products. 

The bottom plots of Fig. 3 show the histograms of the difference between Pmax and the mean 
probability (Pmean) over an interval of ±12.5° around the rank 1 direction for the 25-km (plot c) 
and the 100-km (plot d) products. This difference gives an indication of the peak modulation. The 
larger the difference, the steeper the maximum (or main peak) of the cost function and therefore 
the better the accuracy of retrieved winds is (see sections 2(a) and 2(b)). The larger 
accumulations of data at low difference values in the nadir swath (dotted) with respect to the 
sweet (solid) swath confirms the existence of flatter peaks in the former as discussed above. This 
is not only valid for the 100-km product but also for the 25-km product. As we see from the 
larger accumulation of data at low Pmax-Pmean values in Fig. 3c with respect to Fig. 3d, the 
peaks are much flatter (lower peak modulation) at 25-km than at 100-km resolution. 

Therefore, we conclude that, for QuikSCAT, the 100-km product is less ambiguous and more 
accurate than the 25-km product and therefore more suitable for wind retrieval purposes than the 
25-km product. In this study, we will therefore use the 100-km product. 
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4. MULTIPLE SOLUTION SCHEME 
 

So far, we have extensively examined the inversion problem for QuikSCAT and determined the 
relation between the relative probability of a solution and the MLE in order to prepare 
QuikSCAT ambiguous solutions for AR. We have learned that in the nadir swath, the accuracy of 
the inverted winds is low compared to the sweet swath, due to low peak modulation in the 
probability cost function. For low winds, the accuracy is also low due to the low cost function 

 
         a)                                                                     b) 

 
         c)                                                                     d) 

 
Figure 3 Histograms of the difference between the maximum (Pmax) and the minimum (Pmin) probabilities (top 
plots), and the difference between Pmax and the mean probability (Pmean) over an interval of ±12.5° around Pmax 
(bottom plots), for the sweet (solid lines) and the nadir (dotted lines) regions and for the 25-km (left plots) and the 
100-km (right plots) products. 
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modulation. The worst scenario therefore occurs for low winds in the nadir swath, where the cost 
function modulation is rather flat. 

The number of solutions in the nadir swath is smaller than in the sweet swath (see the relatively 
small amount of data with 3 and 4 solutions compared with 2 solutions in Table 4, in contrast 
with Table 3). This may be caused by the noise and/or the shape of the cost function, i.e., a cost 
function that has well defined and steep probability peaks (or MLE minima) may have a larger 
number of peaks than a cost function that has broad peaks. However, it seems contradictory to 
provide only few wind solutions to AR when the cost function peaks are less well defined, since 
these do not represent the full information content of the wind retrieval. Along a broad peak, 
there are several wind solutions with almost the same relative probability as the peak. However, 
by selecting only one (as the inversion is doing), we  ignore the rest of the points that belong to 
the broad peak. On the other hand, by selecting all of the points of the broad peak, we are 
transferring to AR all retrieved quality information; that is, the inversion could not find a clear 
candidate for that particular region of the cost function, but rather a few candidates with 
comparable probability. 

 

(a) Precedent 

At JPL a procedure, based on a multiple solution inversion output (not constrained to four 
solutions) in combination with AR, called DIRTH (Stiles et al. 2002) was developed. It includes 
an initialization technique for the median filter, called the Thresholded Nudging (TN), and a 
multiple solution selection scheme as input to the median filter, called the Direction Interval 
Retrieval (DIR). 

The TN allows for more than two ambiguities in the initialization (see section 3(b)) and works as 
follows. The probability1 of the cost function is normalized with the probability of rank 1, and the 
number of ambiguities (up to four) with normalized probability above 0.2 is used in the 
initialization. 

The DIR performs AR in the following way. Given a threshold T (0.8), a set of cost function 
points around each of the local maxima (resulting in as many segments as local maxima) is 
selected such that the number of points is minimized and the integral of the cost function over the 
interval of such points is T. Then, AR is performed in the usual manner (except for using the TN 
for initialization), and only the segment of points around the selected ambiguity is further used by 
the median filter (see section 3(b)). 

By examining many wind field cases, we conclude that the DIRTH winds are often very smooth 
and unrealistic in the nadir swath. Here we identify some possible reasons for this result: 

• By applying the median filter only on the segment that was selected in the first place by the 
“traditional” AR, the scheme is subject to the accuracy of the latter. That is, if the traditional 
AR fails in an area and produces the wrong solutions, all the segments used in that area will 
in turn produce a more or less smooth field (probably following some segment extremes, 
depending on the segment width) but wrong. 

                                                           
1 Stiles et al. (2002) use the theoretical relation between MLE and probability (2) to compute the latter. 
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• When using a threshold T of 0.8 to define the segments, it may well happen that the 
remaining cost function points that sum a probability of 0.2 (1-T) contain valuable 
information indeed. In particular, if we look at the Pmax - Pmin distributions in the nadir 
swath for 25-km resolution (Fig. 3a), we see a relatively poor probability modulation. In such 
region, many cost function points with substantial probability may be left out of the segment 
selection. This will in turn decrease the quality of the wind retrieval. 

The reason for setting such threshold T is to prevent oversmoothing. That is, if we use T=1, all 
data in the cost function will be used by the median filter, which in turn will result in a wind field 
inhibited by the NWP reference and the median filter characteristics. This is due to a very 
important limitation of the median filter AR, which is not explicitly using the relative probability 
of each solution, but rather considering all the solutions with identical probability. Despite the 
mentioned threshold and as already discussed, the resulting wind field is still substantially smooth 
in areas with large solution segments, i.e., the nadir region. Since the median filter does not 
ensure meteorologically balanced fields, the retrieved winds are not only oversmoothed but also 
unrealistic in some (of such) areas. 

 

(b) Alternative 

The 2D-Var AR (see section 3(b)) explicitly uses the probability of all ambiguous solutions. This 
AR therefore allows the possibility of using as many ambiguous solutions as we desire without a 
substantial risk of oversmoothing. Moreover, since the variational analysis is always constrained 
to spatial consistency and meteorological balance, we can ensure realistic retrieved winds by 
using a scheme based on a multiple solution inversion output in combination with such AR. 

Figure 4 shows a QuikSCAT retrieved wind field, using the standard inversion output (up to four 
ambiguous wind solutions) and the 2D-Var AR. In the nadir region, it is clearly discernible that 
the retrieved wind field is spatially inconsistent. Since the 2D-Var analysis field (not shown) is 
spatially consistent, the problem is most likely in the ambiguous solution distribution. 

Figure 5a shows the standard ambiguous solution distribution (MLE cost function minima) for 
the same case of Fig. 4. As we can clearly see in the nadir region, the wind solution pattern shows 
almost no solutions in the direction of the mean flow. Therefore, even if the 2D-Var analysis field 
were of acceptable quality, there is no way to select a consistent wind field from such solution 
pattern. 
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Figure 4 QuikSCAT retrieved wind field using the standard inversion output (cost function minima) and the 2D-Var 
AR. The acquisition date is January 15 2002 at 16 UTC. The solid lines separate the sweet-left (left side), the nadir 
(middle), and the sweet-right (right side) regions of the QuikSCAT swath. 

Figure 5b shows the multiple ambiguous solution (not constrained to four) distribution again for 
the same meteorological case as Figs. 4 and 5a. We show all the cost function solutions with 
probability above a guessed threshold1 of 2x10-7. Notice how often the ambiguous solutions in 
the sweet swath are around the cost function minimum, which is in the direction of the mean 
flow, denoting little ambiguity (main cost function minimum much deeper than the remaining 
minima) in comparison to the nadir swath. Note also that the number of solutions in the nadir 
region is large, indicating lower accuracy (broader minima) than in the sweet swath. In 
comparison with Fig. 5a, we are providing much more information content to the AR using the 
multiple solution inversion output. As already discussed, the 2D-Var uses the information in an 
appropriate way (the ambiguous solutions are weighted by their computed probability) and 
therefore, from a theoretical point of view, the multiple solution concept may considerably 
improve the resulting analysis field. Moreover, the AR will now result in a spatially consistent 
wind field since the multiple solution concept does provide solutions aligned with the mean flow 
(see solution distribution in the nadir swath of Fig. 5b). [Note: the dots in Figs. 4 and 5 represent 
quality-controlled points. This issue is discussed more in depth in section 6.] 

 

                                                           
1 The reason for choosing a different probability threshold in the standard procedure and the MSS is due to the 
normalization of the probability; the former is normalized with up to 4 solutions and the latter with up to 144 
(maximum of cost function points at the direction step size of the GMF LUT, i.e., 2.5°). 
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                             a) 

 
                             b) 

 
Figure 5 Same as Fig. 4 but for QuikSCAT ambiguous wind field using (a) the standard inversion output (cost 
function minima); and (b) the multiple solution scheme. Only solutions with probability above 10-5 (a) and 2x10-7 
(b) are shown. 
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It seems reasonable to test the multiple solution scheme (MSS) against the standard procedure. 
The former has up to 144 solutions. To avoid using the meaningless points of the cost function as 
solution ambiguities for the 2D-Var AR, we use the mentioned probability thresholds, i.e., 10-5 
for the standard procedure and 2x10-7 for the MSS. To further reduce the number of 2D-Var 
gradient computations, these probability thresholds may be tuned (increased), for example, but 
this was not necessary here. 

 

5. COMPARISON BETWEEN THE STANDARD PROCEDURE AND THE MSS 
 

As discussed in section 3(b), the 2D-Var background term is a NWP forecast field. The 
QuikSCAT data products distributed by JPL and the National Oceanographic and Atmospheric 
Administration (NOAA) include collocated National Center for Environmental Prediction 
(NCEP) forecast wind information. The latter is used for AR purposes, i.e., as background term. 
As such, a different reference should be used to compare the standard wind retrieval and the MSS 
procedures. In this study, we use First Guess at Appropriate Time (FGAT) ECMWF winds as 
reference. These have an accuracy of about 1 ms-1 RMS in the wind components (e.g. Stoffelen, 
1998). 

 

(a) Statistical results 

Three days of QuikSCAT and ECMWF FGAT collocated winds at 100-km resolution are used in 
the comparison. Table 5 shows the RMS of wind vector differences between ECMWF and three 
different wind sources: standard wind retrieval, MSS and NCEP. Comparing the standard 
procedure and the MSS, the latter shows better performance, i.e., agreement with ECMWF. As 
expected, the major difference between the two procedures is in the nadir region, where the RMS 
is more than 0.5 m s-1 lower for the MSS. In the sweet swath, the MSS also works better. This is 
due in part to an improvement at low winds, where low cost function modulation is expected, and 
in part to the improvement of the analysis field, i.e., a better 2D-Var analysis in nadir is expected 
to positively impact the analysis in the sweet regions. Indeed, the results (not shown) indicate 
better agreement of MSS analysis (compared to standard analysis) with ECMWF in both the 
sweet and the nadir swath. 

Table 5 RMS of vector differences1 (m s-1) 

 
Swath region 

Standard 
procedure 

MSS NCEP 

Sweet 2.48 2.23 2.85 

Nadir 2.98 2.45 2.96 
1 The difference of the two wind sources with ECMWF is taken. 

 

Both the standard procedure and the MSS show generally better scores (against ECMWF) than 
NCEP (see Table 5). This suggests that 2D-Var is successfully exploiting the observations rather 
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than to follow the background (i.e., NCEP). As such, the quality of the background does not 
significantly affect the quality of the retrieved winds. This is also true in the nadir region. As 
discussed in section 4, the MSS provides a larger number of equally likely ambiguous solutions 
in the nadir swath, compared to the sweet regions, thus resulting in a larger influence of the 
background term in 2D-Var. However, the impact of NCEP in the nadir is also minor, as seen 
from the substantial difference in the RMS between the MSS (2.45 m s-1) and NCEP (2.96 m s-1). 
The observations and the constraints on meteorological balance and spatial consistency are 
therefore the most dominant factors in the retrieval. 

Table 6 RMS of vector differences1 at Nadir 

 Standard  
procedure 

MSS 

Wind Speed (m s-1) 1.56 1.50 

Wind Direction (°) 18.82 14.39 
1 The difference of the two wind sources with ECMWF is taken. 

 

Similar to Table 5, Table 6 shows the RMS of vector differences between ECMWF and the 
different QuikSCAT wind sources (i.e., standard procedure and MSS) but separated into wind 
speed and direction and only for the nadir region. The NCEP scores are similar to the standard 
procedure (not shown). The MSS shows a slight improvement (better agreement with ECMWF) 
in the wind speed accuracy compared to the standard procedure. The main improvement is in 
wind direction, where the MSS is more than 4° lower in RMS than the MSS. The fact that the 
main improvement is in wind direction is an expected result since the MSS leaves essentially a 
larger wind direction choice to the AR procedure (i.e., 2D-Var) than the standard procedure. The 
fact that the MSS choice of wind direction also improves the wind speed scores indicates a more 
consistent selection for MSS. 

The overall results (Table 5) show that the difference in wind vector accuracy between the nadir 
and the sweet regions is 20% for the standard procedure, while only 10% for the MSS. This is 
mainly due to the substantial improvement of the MSS in wind direction accuracy at nadir. The 
MSS clearly reduces noise as compared to the standard procedure, due to the spatial smoothing 
constraints, i.e., flow rotation and little divergence, and the improved Jo

scat (8). We now further 
investigate the effect of Jo

scat. 

 

MSS probabilistic behavior 

A way to test the consistency of the MSS is to verify the a priori probabilities of the solutions. 
Figure 6a shows how often a solution with a particular probability value is selected (diamond 
symbols) or is closest to NCEP (star symbols) as a function of probability. Both the x-axis and 
the y-axis are in logarithmic scale. As such, the diagonal denotes a consistent probabilistic 
behavior, i.e., a solution with probability value 10-2 (for example) is expected to be “selected” 1% 
of the time. The closest solution turns out to be probabilistically rather inconsistent as shown by 
the large deviation from the diagonal. This essentially means that if the MSS systematically 
selects the closest solution, it would be doing a poor job since it would not correct the differences 
between QuikSCAT and NCEP (background) observing systems, where they exist. The selected 
solution shows a more consistent probability pattern than the closest, especially in the most 
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populated region, i.e., probabilities between 10-2 and 10-0.4 (see solid line in Fig. 6b), where the 
diamonds clearly follow the diagonal. The reason for this is that many closest-to-NCEP low-
probability solutions are not selected and high-probability solutions are selected instead. This 
indicates that in general 2D-Var is successfully exploiting probability in resolving the large 
number of solutions provided by the MSS, thus reducing dependency (of the MSS) on the 
background, as discussed at the beginning of this section. 

A remaining question is what to do with both tails of the distribution, i.e., probabilities below 10-3 
and above 10-0.2 (see solid line in Fig. 6b), where the probabilistic behavior is far from being 
consistent. Figure 6b shows the quality of the data (star symbols) as a function of probability. 
Note that the quality is decreasing (i.e., increasing RMS) as we approach the extremes of the 
distribution1. In particular, below 10-4, the data are of poor quality (close to 4 m s-1 RMS), 
indicating that the probability threshold of 2x10-7 initially used by MSS (see section 4) may be 
increased to improve the quality of the retrievals. This is a QC issue, which will be further 
discussed in section 6. 

       a)                                                                  b) 

 
Figure 6 (a) Number of times (normalized and in logarithmic scale) that a solution with a particular probability 
value is selected (diamond) or closest to NCEP (star) versus probability (logarithmic scale). (b) Normalized 
histogram of selected solutions (solid line) and mean RMS of vector difference between the selected solutions and 
ECMWF winds (star) versus probability (logarithmic scale). 

 

(b) Cases 

Many meteorological cases were examined in this comparison. In order to better illustrate the 
statistical results of the previous section we show some of these cases here [Note: some 
additional cases can be found in Portabella and Stoffelen 2002b]. 

Figure 7 shows the MSS selected wind field for the same poor-quality case as Figs. 4 and 5. As 
discussed in section 4, in contrast with the standard procedure, the MSS provides solutions in the 
direction of the mean flow in the nadir swath (see Fig. 5). As such, a spatially more consistent 
                                                           
1 Below probability of 8x10-6 the number of data is very small (see solid line in Fig. 6b) and therefore not statistically 
significant, as denoted by the noisy RMS values in the left part of Fig. 6. This is also true for probability above 10-0.2. 
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and realistic wind field is found when using the MSS. This is shown in Figs. 4 and 7, especially 
in the middle of the plot. A few inconsistent wind arrows (probably rain contaminated), which 
should be quality controlled (see discussion on QC at 100-km resolution in section 6), are still 
present though. 

 

 

 

 
Figure 7 Same as Fig. 4 but for MSS retrieved wind field. 
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Figure 8 shows another interesting case of how the MSS is improving the quality of the retrieved 
wind field in the nadir with respect to the standard procedure. Note the noisy and granular wind 
field over the entire nadir swath in Fig. 8a. The MSS (Fig. 8b) is successfully filtering this noise, 
keeping at the same time the dynamical information of this case (intensity and location of the 
low-pressure system are the same in both plots). 

Figure 9 shows a low wind speed case. Again, the standard wind field (Fig. 9a) shows a noisy 
pattern in the nadir swath, which is successfully filtered by the MSS (Fig. 9b). The presence of a 
low-pressure system is better depicted by the MSS. Moreover, the standard wind field is also 
somewhat noisy in the sweet swath, as may be expected from the low cost function modulation at 
low winds (see section 4). As shown in Fig. 9, the MSS is successfully filtering the noise in the 
sweet swath as well. 

Figure 9c shows the ECMWF wind field. Both the intensity and location of the low-pressure 
system are in disagreement with the observations. The assimilation of a well-defined and spatially 
consistent wind field such as the MSS could help very much to improve ECMWF forecast. 

 
 
    a)                                                                           b) 

 
Figure 8 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b). The acquisition date is 
February 3 2002 at 02 UTC. The solid lines separate the sweet-right (left side), the nadir (middle), and the sweet-left 
(right side) regions of the QuikSCAT swath. 
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    a)                                                                         b) 

 
                                           c) 

 
Figure 9 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b), and ECMWF wind field (c). 
The acquisition date is February 3 2002 at 07 UTC. The solid lines separate the sweet-right (left side), the nadir 
(middle), and the sweet-left (right side) regions of the QuikSCAT swath. 
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6. NEED FOR A QUALITY CONTROL AT 100-KM RESOLUTION 
 

An important aspect of the 100-km product used in this study, which needs to be examined, is the 
QC. Up to now, the 100-km product is using the MLE-based QC at 25-km resolution (KNMI 
QC) developed by Portabella and Stoffelen (2001) in the following way: if there is sufficient 
information on the 100-km WVC after QC (at least half of the 25-km WVCs within the 100-km 
WVC), the wind retrieval is performed. 

 

(a) Problems using 25-km QC in 100-km WVC 

The problem of using a 25-km QC procedure in 100-km WVCs is illustrated in Fig. 5 (see section 
4). Figure 5b shows the effects of using the 25-km QC recommended by Portabella and Stoffelen 
(2002d), i.e., KNMI QC1 + JPL rain flag2 in the nadir and only KNMI QC in sweet regions, in 
comparison with Fig. 5a, where only the KNMI QC has been applied. On the one hand, as 
reported by Portabella and Stoffelen (2002d), the JPL rain flag is rejecting a considerable amount 
of consistent winds, as seen in the Northern part (nadir region) of the wind flow (see WVCs with 
consistent wind solutions in Fig. 5a removed in Fig. 5b). On the other hand, the 25-km QC (using 
JPL rain flag) is able to reject several WVCs of poor quality, probably rain contaminated (see the 
nadir region WVCs with inconsistent solution pattern, both in speed and direction, in the lower 
half of Fig. 5a, removed in Fig. 5b). These poor-quality WVCs show zero probability in the 
direction of the flow (not shown) and therefore it is of great importance to identify these cases 
and reject them, regardless of the solution scheme, i.e., the standard procedure or the MSS, we 
use. However, even if the 25-km QC is able to remove most of the poor-quality WVCs, a few of 
them still remain in Fig. 5b (notice the absence of solutions aligned with the mean flow in a few 
nadir WVCs). 

 

(b) Alternatives 

Using the background error spatial structure functions, large discrepancies between the wind 
solutions provided by the MLE inversion and the analysis (i.e., output from variational AR) can 
be interpreted as poor-quality retrieved solutions. After a comprehensive validation, a threshold, 
which relates these discrepancies to the quality of the observations, can be set. This gross error 
check is the so-called variational QC. The inconsistent nadir winds could therefore be rejected 
using this QC. Moreover, in contrast with the JPL rain flag, it would generally keep the consistent 
wind flow. However, the rejection of too many discrepancies with the analysis could lead to a 
retrieved field too close to the background and, as such, not useful in data assimilation, i.e., the 
impact of assimilating observations that are well in agreement with the NWP background is 
expected to be negligible. Consequently, an extensive testing is required prior to using such QC. 
                                                           
1 The KNMI QC uses the normalized MLE (Rn) information at 25-km resolution to filter poor quality data, i.e. a Rn 
threshold, which maximizes the good quality acceptance and the poor quality rejection, is set. 
2 The rain flag developed by JPL (see Huddleston and Stiles 2000) looks for the probability of encountering a 
columnar rain rate that is greater than 2km*mm/hr. This probability value is read directly from a table based on 
several input parameters including average brightness temperature (both H-pol and V-pol), normalized inter-view σ° 
difference, wind speed, wind direction relative to along track, and a normalized MLE. The space spanned by these 
parameters can detect whether the set of σº values used in wind retrieval is affected by rain. 
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As discussed in section 5(a), the MSS selected solutions with low probability values, i.e., below 
10-4, are of poor quality (see Fig. 6b). As such, a more straightforward QC (prior to variational 
analysis) can be set by using a higher probability threshold than the one used  by the MSS (i.e., 
2x10-7). However, by increasing the probability threshold, we will also decrease the number of 
MSS ambiguous solutions (see section 4). This may lead to some additional noise in the nadir 
swath, i.e., the lower the range of solutions the larger the number of cases with no solution 
aligned with the “true” direction. Nevertheless, large discrepancies with the mean flow will most 
generally occur when the observation is of poor quality. Therefore, a variational QC could then 
be used to remove such poor quality cases. 

Another possibility is to set up a QC procedure for 100-km resolution in a similar way as it was 
done for 25 km, i.e., computing Rn (at 100km) and setting an optimal threshold in terms of 
maximum good quality acceptance and poor quality rejection. The 100-km QC would be able to 
reject the 100-km WVCs that despite they contain good-quality 25-km information (after 25-km 
QC), they result in poor-quality 100-km winds; for example, a 100-km WVC crossed by a front 
line, which still contains enough quality controlled 25-km WVCs for wind retrieval. 

A way to avoid a decrease in the number of MSS ambiguous solutions and still remove the 
WVCs that contain low probability selected solutions is to use an appropriate Rn threshold at 
100-km resolution. As it is clear from Fig. 10, the Rn increases with decreasing probabilities of 
the selected solution. Since the quality of the data is decreasing with decreasing probabilities 
(Fig. 6b), a Rn threshold would not only remove poor quality data (see above discussion on 100-
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Figure 10 Two-dimensional histogram of the Rn versus probability of the selected solution. The total number of 
data is 50642. The contour lines are in logarithmic scale (two steps corresponding to a factor of 10 in number 
density); the lowest level (outer-most contour line) is at 3 data points. 
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km Rn) but also the cases with low probability selected solutions, e.g., a threshold of (let’s say) 
10 would remove almost all cases with (selected) probability below 10-4 and keep most of the 
cases with probability above 10-4. 

In order to define the best strategy for 100-km QC further investigation of the procedures 
discussed in this section is required. A combination of some of these procedures may be more 
appropriate. 

 

7. CONCLUSIONS 
 

In this study, a probabilistic approach is used to improve the QuikSCAT retrievals used for 
assimilation into NWP. The standard wind retrieval procedure, which only considers as 
ambiguous solutions the local MLE cost function minima, results in inaccurate winds in the poor-
azimuth-diversity nadir region of QuikSCAT. 

The MLE cost function is transformed into an adequate probability cost function valid for 
application to 25 and 100-km retrievals. The 100-km product, which is less noisy by definition, 
shows both less ambiguity and more accuracy than the 25-km product and, as such, the former is 
recommended for QuikSCAT use in NWP data assimilation. 

A median filter AR, in which the probability of each solution is not explicitly used in the final 
selection, is inappropriate since solution probabilities turn out to be very informative. We propose 
to use the multiple solution inversion output in combination with a variational analysis AR (i.e., 
2D-Var), the so-called MSS. The variational analysis AR is not only capable of explicitly using 
probability for the multiple solutions but also ensures spatial consistency and meteorological 
balance of the retrieved winds. 

The comparison between the standard procedure and the MSS is performed using forecast NCEP 
winds as background term for 2D-Var and FGAT ECMWF winds as validation reference. The 
MSS turns out to be more in agreement with ECMWF than the standard procedure, especially at 
nadir. As expected, the MSS wind direction is substantially better in nadir, thus validating the 
procedure proposed. Moreover, the MSS selected solution is, in general, consistent with the a 
priori set probability, whereas the closest-to-NCEP solution is rather inconsistent. In other words, 
the influence of the background in the retrieved field is relatively small. As such, 2D-Var is 
successfully exploiting the information content of the observations. 

The meteorological cases examined clearly show more spatially consistent and realistic wind 
fields for the MSS than for the standard procedure, especially at nadir. Moreover, the MSS is not 
only acting as a spatial filter, but is also keeping the wind information (e.g., lows, fronts, etc.) 
present in the observations. As such, the multiple solution scheme seems to be more appropriate 
for QuikSCAT data assimilation purposes than the standard scheme. 

Since the ECMWF field used for validation is spatially smooth, it is at this point difficult to 
assess the effect of the background error structure functions in obtaining a smooth analysis. In 
particular for applications other than NWP, it may still be worthwhile to evaluate the effect of the 
spatial filtering by spectral analysis of the retrieved fields or by validating MSS with in-situ data. 
This could open the way for testing MSS at higher resolutions. 
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In addition to the MLE-based QC procedure at 25-km resolution (see Portabella and Stoffelen 
2001; Portabella and Stoffelen 2002d) we suggest: 1) a similar procedure, but at 100-km, in order 
to reject spatially variable and unrepresentative WVCs; 2) a variational QC to remove large 
inconsistencies with the analysis field. 

It seems reasonable to apply the same methodology (MSS) to the QuikSCAT outer regions. In 
such regions, there is a substantial ambiguity problem since only two views are available. 
However, as discussed in section 2, the accuracy of a two-view system is comparable to a three-
view (or more) system provided that we use an effective AR procedure. Moreover, the variational 
analysis AR used by the MSS should work since the almost unique wind information (i.e., low 
ambiguity) of the inner swath will be extrapolated to the few nodes of the outer regions. 
However, it is also important to say that a comprehensive QC is needed to successfully derive 
winds in the outer regions. Portabella (2002) shows that this is not trivial and therefore further 
investigation is needed to achieve an effective variational QC in the outer region prior to 
operationally assimilate the QuikSCAT outer-region winds into NWP. 

 

APPENDIX: NORMALIZED RESIDUAL 
 

The MLE represents a squared distance, which is “normalized” by the measurement error 
variance or noise (see (1)). The MLE formulation is derived from a Gaussian probability 
distribution with unit variance of this normalized distance. As such, the MLE should behave 
uniformly across the swath (WVC number) and over any wind condition. However, in practise 
the measurement noise is misspecified (a more detailed analysis on this can be found in 
Portabella and Stoffelen 2002c). In order to cure this problem, for a given wind and node number, 
an expected MLE value can be estimated, and used to normalize the MLE in the following way: 

Rn = MLE / <MLE>  (10) 

where the MLE value represents any point of the cost function for a particular WVC, and <MLE> 
is the expected MLE for that WVC (node number) and wind condition. 

Note that we are not trying to change the relative weights of (1) but rather provide a uniform 
MLE. In other words, we do not intend to optimise the inversion, i.e., change the MLE formula, 
since we believe that (1) is already working reasonably well for such purpose; we rather define a 
more uniform parameter which may be useful for QC and for assessing solution probability. 

 

<MLE> for QuikSCAT 

The purpose of the <MLE> is to compensate the misestimation of the measurement noise in order 
to correct the MLE dependencies. Therefore, an accurate knowledge of the instrument and 
geophysical noise is needed. In this respect, Figa and Stoffelen (2000) used an instrument error 
model derived by Cavanié (1997) to compute the <MLE> of the NSCAT Rn parameter. For 
QuikSCAT however, there is no instrument error model available and an alternative method has 
to be sought. 
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Portabella and Stoffelen (2001) used about 4 days of QuikSCAT data to compute the mean MLE 
as a function of WVC number and wind condition. After filtering the noise on such surface, they 
fit a 2D function, which is used to compute the <MLE> at any observation point. Further details 
on how to compute Rn in this case can be found in Portabella and Stoffelen (2002a). 
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