





### Ocean and Sea Ice SAF

# ERS L2 winds Data Record Product User Manual



25 km level 2 wind products (OSI-152) DOI: 10.15770/EUM\_SAF\_OSI\_0009 Version 1.1, February 2017

#### DOCUMENT SIGNATURE TABLE

|              | Name                        | Date     | Signature |
|--------------|-----------------------------|----------|-----------|
| Prepared by: | O&SI SAF Project<br>Team    | Feb 2017 |           |
| Approved by: | O&SI SAF Project<br>Manager | Feb 2017 |           |

### **DOCUMENTATION CHANGE RECORD**

| Issue / Revision | Date     | Change | Description                            |
|------------------|----------|--------|----------------------------------------|
| Version 1.0      | Dec 2016 |        | First version                          |
| Version 1.1      | Feb 2017 | Minor  | Changes resulting from comments in DRR |
|                  |          |        |                                        |
|                  |          |        |                                        |
|                  |          |        |                                        |

KNMI, De Bilt, the Netherlands Reference: SAF/OSI/CDOP2/KNMI/TEC/MA/279

*Cover illustration:* ERS-1 wind field retrieved in the Pacific (24° N, 172° E) on 21 August 1993 at approximately 11:00 UTC. The scatterometer wind arrows are coloured according to their Beaufort force, the ECMWF ERA-Interim NWP winds are plotted in green. Orange dots indicate Wind Vector Cells flagged by the Quality Control due to e.g. heavy rain or confused sea state. Hurricane Keoni is clearly visible. In the NWP wind field the cyclonic structure is too weak and located at the wrong position, indicating that scatterometer winds may help to improve the wind field analysis.

### Contents

| 1.   | Introduction4                                |
|------|----------------------------------------------|
| 1.1. | Overview                                     |
| 1.2. | Disclaimer                                   |
| 1.3. | Useful links                                 |
| 1.4. | Limitations and remaining issues             |
| 2.   | The ERS scatterometer                        |
| 3.   | Processing scheme7                           |
| 3.1. | Input screening                              |
| 3.2. | Backscatter calibration                      |
| 3.3. | NWP collocation                              |
| 3.4. | Quality control and monitoring               |
| 4.   | Helpdesk and data availability 10            |
| 5.   | Data description 11                          |
| 5.1. | Wind product characteristics                 |
| 5.2. | File formats                                 |
| 6.   | References 14                                |
| 7.   | Abbreviations and acronyms 16                |
| 8.   | Appendix A: BUFR data descriptors 17         |
| 9.   | Appendix B: NetCDF data format 19            |
| 10.  | Appendix C: Data gaps and number of files 22 |

### 1. Introduction

#### 1.1. Overview

The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) produces a range of airsea interface products, namely: wind, sea ice characteristics, Sea Surface Temperatures (SST) and radiative fluxes, Surface Solar Irradiance (SSI) and Downward Long wave Irradiance (DLI). The Product Requirements Document [1] provides an overview of the committed products and their characteristics in the current OSI SAF project phase, The Service Specification Document [2] provides specifications and detailed information on the services committed towards the users by the OSI SAF in a given stage of the project.

KNMI is involved in the OSI SAF as the centre where the level 1 to level 2 scatterometer wind processing is carried out. This document is the Product User Manual to the ERS wind scatterometer climate data record. More general information on the OSI SAF project is available on the OSI SAF web site: <u>http://www.osi-saf.org/</u>. The user is strongly encouraged to register on this web site in order to receive the service messages and the latest information about the OSI SAF products. More information about this product can also be found on <u>http://www.knmi.nl/scatterometer/</u>.

The scatterometer is an instrument that provides information on the wind field near the ocean surface, and scatterometry is the knowledge of extracting this information from the instrument's output. Space-based scatterometry has become of great benefit to meteorology and climate in the past years. This is extensively described in the Algorithm Theoretical Baseline Document, see [3].

KNMI has a long experience in scatterometer processing and is developing generic software for this purpose. Processing systems have been developed for the ERS, NSCAT, SeaWinds, ASCAT, Oceansat-2 and RapidScat scatterometers. Scatterometer processing software is developed in the EUMETSAT Numerical Weather Prediction Satellite Application Facility (NWP SAF), whereas wind processing is performed operationally in the Ocean and Sea Ice SAF (OSI SAF).

The archived near-real time ERS-1 and ERS-2 UWI (User Wind Data) [4] files were taken from the KNMI tape archive. These data are a copy of the data available in the ECMWF MARS archive. The data span the following periods:

- ERS-1: 2 March 1992 to 2 June 1996
- ERS-2: 20 March 1996 to 15 January 2001

It was considered to use the ASPS (Advanced Scatterometer Processing System) data as reprocessed in the SCIRoCCo (SCatterometer InstRument Competence Centre, http://scirocco.sp.serco.eu) rather than the archived near-real time data for winds reprocessing. However, finally it was decided not to do this for two main reasons: firstly the ERS-1 reprocessed data were not yet released at the time the winds reprocessing started and secondly it appeared that the quality, characteristics and completeness of the ERS-2 ASPS data record did not differ significantly from the ERS-2 archived near-real time data.

The data have been processed using the ASCAT Wind Data Processor (AWDP) software version 3.0, as available in the NWP SAF [5]. The ambiguity removal and product monitoring are done using the ECMWF re-analysis (ERA) Interim winds rather than the archived ECMWF operational winds. The ERA-Interim winds are much more uniform over time than the operational winds. The OSI SAF Climate Data Records (CDRs) can be obtained from the EUMETSAT Data Centre.

This user manual outlines user information for the OSI SAF ERS Wind CDRs on 25 km grid spacing, OSI-152. Section 2 presents a brief description of the ERS instrument, and section 3 gives an overview of the data processing configuration. Section 4 provides details on how to access the products. Detailed information on the file content and format is given in section 5. The product quality is elaborated in the validation report to this CDR [6].

#### 1.2. Disclaimer

All intellectual property rights of the OSI SAF products belong to EUMETSAT. The use of these products is granted to every interested user, free of charge. If you wish to use these products, EUMETSAT's copyright credit must be shown by displaying the words "copyright (year) EUMETSAT" on each of the products used.

The OSI SAF is much interested in receiving your feedback, would appreciate your acknowledgment in using and publishing about the data, and like to receive a copy of any publication about the application of the data. Your feedback helps us in maintaining the resources for the OSI SAF wind services.

#### 1.3. Useful links

KNMI scatterometer web site: http://www.knmi.nl/scatterometer/ Information on OSI SAF activities at KNMI: http://www.knmi.nl/scatterometer/osisaf/ OSI SAF wind product documentation on http://www.osi-saf.org/ NWP SAF website: http://nwpsaf.eu/ **EUMETSAT Data Centre:** http://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html ESA ERS Scatterometer information pages: https://earth.esa.int/web/sppa/mission-performance/esa-missions/ers-1/scatterometer/sensordescription and https://earth.esa.int/web/sppa/mission-performance/esa-missions/ers-2/scatterometer/sensordescription ESA SCIRoCCo project: http://scirocco.sp.serco.eu/

#### Limitations and remaining issues 1.4.

None currently known.

### 2. The ERS scatterometer

The Active Microwave Instrument (AMI, see the links to the ESA website in section 1.3) is one of the instruments carried on-board the European Remote Sensing Satellites (ERS-1 and ERS-2) launched by the European Space Agency (ESA) on 17 July 1991 and 20 April 1995. Both satellites were in a sun-synchronous orbit with an inclination of 98.5° and a repeat cycle of 3 days or 35 days (about 100 minutes per orbit). The local sun time at ascending node was 22:30.

The AMI incorporates two separate radars, a Synthetic-Aperture Radar (SAR) operating in image or wave mode, and a Wind Scatterometer. The Earth's surface is illuminated by four antennas and backscattered energy is received either to derive data on wind fields and wave spectra, or to produce high resolution images. The operational requirements are such that each mode needs to be operated exclusively, but the Wind and Wave Modes are also capable of interleaved operation, in so-called 'Wind/Wave Mode'.

The Wind Mode uses three antennas to generate radar beams looking 45 degrees forward, sideways, and 45 degrees backwards with respect to the satellite's flight direction. These beams illuminate a 500 km-wide swath as the satellite moves along its orbit, and each provide measurements of radar backscatter from the sea surface on a 25 km grid. The result is three independent backscatter measurements for each grid point, obtained using the three different viewing directions and separated by a short time delay. As the backscatter depends on the sea surface roughness as a function of the wind speed and direction at the ocean surface, it is possible to calculate the surface wind speed and direction by using these 'triplets' within a mathematical model.

The instrument operates at a frequency of 5.3 GHz (C-band), which makes it rather insensitive to rain.

ERS-1 has been operational from 1991 to 2000 and ERS-2 from 1995 to 2011, although since beginning of 2001 there have been problems with the satellite gyroscopes and the on-board tape recorder. Since August 2003 until the end of the mission ESA has distributed regional Wind Scatterometer data from ERS-2 within the visibility of ESA ground stations over Europe, North Atlantic, the Arctic and North America. The periods used to generate the data records are shorter however since scatterometer data are not available over the whole mission lifetimes, see section 5 for a detailed overview of available periods. The CDR spans the period of March 1992 to January 2001 with an ERS-1/ERS-2 overlap period of March to June 1996, i.e., the period of regional ERS-2 coverage was not included. Also the cal/val period of ERS-2 (before 20<sup>th</sup> March 1996) was not included although good quality winds can probably obtained [11]. These periods will again be considered in a new reprocessing which is planned in the next OSI SAF phase.



Figure 1: ERS wind scatterometer geometry (source: ESA web site).

### 3. Processing scheme

Figure 2 shows the system architecture to generate the wind data sets. The processing environment consists of a set of software components to collocate scatterometer data with ECMWF model data, to generate the wind data and to convert the output BUFR data into level 2 (swath) NetCDF data and level 3 (gridded to a regular lat/lon grid) NetCDF data. General information about the scatterometer wind processing algorithms can be found in the Algorithm Theoretical Basis Document (ATBD) [3].



#### Figure 2: System architecture of reprocessing chain

The following components are shown in Figure 2.

- AWDP is the wind processing software for ASCAT and ERS data. It is publicly available in the NWP SAF, see [5].
- Bufr2XmlNc is a program to convert BUFR scatterometer data into level 2 NetCDF data. It is currently used in the near-real time OSI SAF processing.
- Bufr2Grid is a program to convert BUFR scatterometer data into level 3 NetCDF data. Two daily files are produced containing the ascending and descending parts of the orbits, respectively. It is currently used in the near-real time data processing for the Copernicus Marine Environment Service.

#### 3.1. Input screening

Backscatter input products contain flags to denote anomalous (instrument) conditions, which are obviously checked before wind retrieval and no retrieval is done in WVCs where these flags are raised. The ERS Missing Packet Counters (MPC) and ERS ESA Quality Control flag [4] are evaluated in the BUFR input data. If the MPC value is below -18 or above 18, the beam information is rejected. The QC flags for beam arcing and frame checksum error are also evaluated and data are not used whenever these flags are set.

#### 3.2. Backscatter calibration

The backscatter values in the input products are calibrated in two steps. First, a non-linear correction is applied which depends on beam and backscatter value. This correction ensures that the ERS backscatter values get the same distribution as those from ASCAT [7] which is considered as a reference. Second, a linear WVC and beam dependent bias in dB is added to the incoming  $\sigma^0$ s, the NWP Ocean Calibration (NOC). The calibration table was obtained by fitting the actual measurements to the theoretical GMF function. More details are provided in [8]. Note that the calibrated backscatter values are only available within the wind processing software; the  $\sigma^0$  data in the wind product are identical to those in the input product.

During the ERS-1 and ERS-2 missions, several events and anomalies occurred which have led to changes in backscatter calibration [9], [10], [11]. NOC backscatter corrections have been obtained separately for the following periods:

- ERS-1 period 1: 2 March 1992 to 23 December 1993
- ERS-1 period 2: 24 December 1993 to 13 January 1994
- ERS-1 period 3: 14 January 1994 to 21 March 1995
- ERS-1 period 4: 22 March 1995 to 2 June 1996
- ERS-2 period 1: 20 March 1996 to 4 August 1996
- ERS-2 period 2: 6 August 1996 to 18 June 1997
- ERS-2 period 3: 19 June 1997 to 25 October 1998
- ERS-2 period 4: 26 October 1998 to 15 January 2001

#### 3.3. NWP collocation

NWP forecast wind data are necessary in the ambiguity removal step of the processing. The scatterometer winds have been collocated with ERA-Interim wind data from ECMWF [12]. Stress equivalent (U10S) winds have been computed from the real ERA-Interim forecast 10m winds, sea surface temperature, air temperature, Charnock parameter and specific humidity, using a stand-alone implementation of the ECMWF model surface layer physics [13]. The equivalent neutral winds have been converted to stress equivalent winds (U10S) by multiplying by a correction factor of  $\sqrt{(\rho/<\rho>)}$ , where  $\rho$  is the air density and  $<\rho>$  is the average air density (1.225 kg/m<sup>3</sup>).

The correction factor follows from the fact that the surface roughness as measured by the scatterometer is more closely correlated with surface stress  $\tau$  than with the actual wind speed at 10 m. The surface stress  $\tau$  is proportional to the air density and to the square of the equivalent neutral 10 m wind. In order to make the NWP winds equivalent to the scatterometer winds, we need to apply a correction, i.e. multiply by the square root of the normalised density.

The air density is computed from the NWP model mean sea level pressure (*msl*), specific humidity (*q*) and air temperature (*T*) as  $\rho = msl / (287.04 \times (1 + 0.6078 \times q) \times T)$  [14].

Wind forecasts are available twice a day (00 and 12 GMT analysis time) with forecast time steps of +3h, +6h, ..., +18h. The model wind vector component data have been quadratically interpolated with respect to time and bi-linearly interpolated with respect to location and put into the level 2 information part of each WVC.

#### 3.4. Quality control and monitoring

In each WVC, the  $\sigma^0$  data is checked for quality and completeness and the inversion residual [3] is checked. Degraded WVCs with excessive wind variability [15] are flagged; see section 5.2 for more details.

An information file is made for each product. The content of the file is identical for each product and results from a compilation of all the global information concerning this product. From these files, various graphs have been produced to visually display the confidence levels of the products and their evolution with time. Any deviations from nominal behaviour would be immediately visible as steps in these graphs. An example of such a graph is shown in Figure 3. It shows that the average MLE values are quite constant over time showing only some seasonal fluctuations. Data quality is also available to the users within the products; see section 5 for a description of quality flags. More information on the data quality and stability over time can be found in the validation report [6].



Figure 3: Daily average MLE values (1<sup>st</sup> rank wind solution) per group of WVCs (inner swath, mid swath and outer swath) of wind products over the entire reprocessing period of ERS-2.

### 4. Helpdesk and data availability

For a swift response management procedure, user requests on the OSI SAF data products should be issued at the Ocean and Sea Ice SAF website (<u>http://www.osi-saf.org/</u>). You can also send an email to <u>scat@knmi.nl</u>.

A BUFR reader which is able to convert BUFR data into ASCII or NetCDF format is available at <u>www.knmi.nl/scatterometer/bufr\_reader/</u>.

Unique Digital Object Identifiers (DOIs) are attached to the data records. A landing page containing the latest product availability information and documentation is connected to the DOI:

http://dx.doi.org/10.15770/EUM\_SAF\_OSI\_0009

The products are available (after registration) from the EUMETSAT Data Centre, <u>http://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html</u>. The data sizes for the entire data set and per orbit file are listed in the table below. There are on average 14.33 ERS orbits per day, depending on the repeat cycle (43 orbits in 3 days or 501 orbits in 35 days).

| Product                 | Size of one orbit file | Size of 9 years data record |
|-------------------------|------------------------|-----------------------------|
| 25 km BUFR              | 1.1 MB                 | 40 GB                       |
| 25 km NetCDF (g-zipped) | 320 kB                 | 12 GB                       |

### 5. Data description

#### 5.1. Wind product characteristics

#### Physical definition

Horizontal stress equivalent wind vector at 10 m height, obtained using the CMOD7 GMF, see [16].

#### Units and range

Wind speed is measured in m/s. The wind speed range is from 0-50 m/s, but wind speeds over 25 m/s are generally less reliable [3]. In the BUFR products, the wind direction is in *meteorological* (World Meteorological Organisation, WMO) convention relative to North: 0 degrees corresponds to a wind flowing to the *South* with a clockwise increment. In the NetCDF products, the wind direction is in *oceanographic* convention: 0 degrees corresponds to a wind flowing to the *North* with a clockwise increment.

#### Input satellite data

The archived near-real time ERS 1 and ERS 2 UWI (User Wind Data) BUFR format data at 25 km swath grid were used to generate the 25 km wind product. The data were obtained from the KNMI archive and are a copy of the data in the ECMWF MARS archive. The data record covers the period from March 1992 to January 2001, see section 10 for an overview of missing data.

#### Geographical definition

The ERS satellites were in a near-polar sun synchronous orbit at 98 degrees inclination at approximately 780 km orbit height. The satellite swath is located to the right of the satellite ground track. The swath width is 19 25 km size WVCs, corresponding to 475 km. The data are organised in rows of 19 WVCs. Products are organised in files containing one orbit, starting at the ascending Equator pass.

#### Output product

The input products have been processed into a BUFR output product including a unique wind solution (chosen), its corresponding ambiguous wind solutions and quality information (distance to cone, quality flag). See section 8 for an overview of the used descriptors in the BUFR data format. The products are also available in NetCDF format; see section 9 for more details.

#### Expected accuracy

The expected accuracy is defined as the expected bias and standard deviation of the primary calculations. The accuracy is validated against in situ wind measurements from buoys, and against NWP data. Even better, the errors of all NWP model winds, in situ data, and scatterometer winds are computed in a triple collocation exercise [17]. The performance is pretty constant over the globe and depends mainly on the sub footprint wind variability. The performance of the products issued by the OSI SAF is characterised by a wind component standard deviation smaller than 2 m/s and a bias of less than 0.5 m/s in wind speed. More validation information is available in [6], showing that the actual products are much more accurate. As compared to ECMWF model winds, the wind component standard deviations are approximately 1.7 to 1.9 m/s, with a wind speed bias of less than 0.2 m/s. As compared to buoy winds, the wind component standard deviations are approximately 1.8 m/s with a wind speed bias of less than 0.3 m/s.

#### 5.2. File formats

Wind products are in BUFR Edition 4 or in NetCDF format. A complete description of BUFR can be found in WMO publication No 306, Manual on Codes.

The file name convention for the level 2 BUFR product is

scatt\_YYYYMMDD\_HHMMSS\_SAT\_ORBIT\_T\_SMPL\_CONT.l2.bufr or

OR1ERW025\_YYYYMMDD\_HHMMSS\_ORBIT\_ERSX.bufr (from the EUM Data Centre)

- YYYYMMDD denotes the acquisition date (year, month and day) of the first data in the file
- HHMMSS denotes the acquisition time (hour, minute and second) of the first data in the file
- SAT denotes the satellite name, 'ers1\_\_' or 'ers2\_\_' for this data record
- ERSX refers to the satellite name, 'ERS1' or 'ERS2'

- ORBIT is the orbit number of the first data in the file (00000-99999)
- T is the processing type ('o' for operational)
- SMPL is the WVC sampling (cell spacing): it contains '250' for the 25 km product

CONT refers to the product contents: always 'ovw' for a product containing Ocean Vector Winds

File name examples are

scatt\_19920826\_193131\_ers1\_\_\_05828\_o\_250\_ovw.l2.bufr or

OR1ERW025\_19920826\_193131\_05828\_ERS1.bufr (from EUM Data Centre)

The wind product is stored in the BUFR format as proposed for ASCAT and described in the WMO Manual on Codes, a list of descriptors (fields) contained in each WVC is provided in section 8.

The BUFR data contain three main sections: level 1 information (fields 1-62), level 2 Soil Moisture information (fields 63-82) and level 2 wind information (fields 83 and up). The reprocessed ERS wind products do not contain Soil Moisture information.

The NetCDF data have almost the same file name convention as the BUFR data, only the part 'l2.bufr' is replaced by '.l2.nc', for example:

scatt\_19920826\_193131\_ers1\_\_\_05828\_o\_250\_ovw.l2.nc or

OR1ERW025\_19920826\_193131\_05828\_ERS1.nc (from EUM Data Centre)

Contrary to the BUFR products, the NetCDF data do not contain backscatter information but only the level 2 wind (selected wind solution only) and sea ice information. They are intended to be an easy to handle wind-only product, see section 9.

Field 84 ('Generating Application') contains the value 91 which means that first guess model winds are used for ambiguity removal. The interpolated model winds are in the fields 85-86.

The Wind Vector Cell Quality Flag (field 89, table 021155) has the following definitions:

| Description                                             | BUFR bit   | Fortran bit |
|---------------------------------------------------------|------------|-------------|
| Reserved                                                | 1          | 23          |
| Not enough good sigma-0 available for wind retrieval    | 2          | 22          |
| Poor azimuth diversity among sigma-0 for wind retrieval | 3          | 21          |
| Any beam noise content above threshold                  | 4          | 20          |
| Product monitoring not used                             | 5          | 19          |
| Product monitoring flag                                 | 6          | 18          |
| KNMI quality control data rejection                     | 7          | 17          |
| Variational quality control data rejection              | 8          | 16          |
| Some portion of wind vector cell is over land           | 9          | 15          |
| Some portion of wind vector cell is over ice            | 10         | 14          |
| Wind inversion not successful for wind vector cell      | 11         | 13          |
| Reported wind speed is greater than 30 m/s              | 12         | 12          |
| Reported wind speed is less than or equal to 3 m/s      | 13         | 11          |
| Not used                                                | 14         | 10          |
| Not used                                                | 15         | 9           |
| No meteorological background used                       | 16         | 8           |
| Data are redundant                                      | 17         | 7           |
| Distance to GMF too large                               | 18         | 6           |
| Reserved                                                | 19-23      | 5-1         |
| Missing value                                           | All 24 set | All 24 set  |

In Fortran, if the Wind Vector Cell Quality Flag is stored in an integer I then use **BTEST(I,NDW-NB)** to test BUFR bit **NB**, where **NDW**=24 is the width in bits of the data element in BUFR. The **BTEST** function is equivalent to **(I/2^NF) modulo 2** where **NF** is the Fortran bit number.

If the 'product monitoring not used' bit, Fortran bit 19, is set to zero, the product is monitored. If the product is monitored and the 'product monitoring flag' bit, Fortran bit 18, is set to zero, the product is valid; otherwise it is rejected by the product monitoring [3]. This is based on a statistical check of the number of WVC QC rejections, the wind speed bias with respect to the NWP background, and the wind vector RMS difference with respect to the NWP background. The product monitoring bits have the same value for all WVCs in one BUFR output file. Since all problematic data due to instrument issues already have been removed from the input data set, product monitoring rejection does not occur in these wind data records.

If the KNMI QC flag, Fortran bit 17, is set in a WVC this means that the backscatter information is of poor usability for various reasons, such as a too large inversion residual, or a too high noise value in the input product. WVCs in which the KNMI QC flag is set, are not used in the calculation of the analysis field in the ambiguity removal step. However, after the ambiguity removal the wind solution closest to the analysis field is chosen (if wind solutions are present in the WVC). This means that such a WVC may contain a selected wind solution, but it is suspect.

The land presence flag, Fortran bit 15, is set if a land fraction (see section 3.2) larger than zero is calculated for the WVC. As long as the land fraction is below the limit value, a reliable wind solution may however still be present so there is normally no reason to reject WVCs with the land flag set.

The Bayesian ice screening algorithm as implemented in AWDP [18] was used when creating the CDRs. The ice presence flag, Fortran bit 14, is set if the Bayesian sea ice screening algorithm calculates ice for the WVC [3]. Note that the products contain wind solutions also over sea ice regions. These bogus winds are flagged both by the KNMI quality control flag and by the ice flag. Hence it is important to reject any winds with the KNMI quality control flag set when ingesting the products. Note that WVCs that are rejected due to a large inversion residual (e.g., in case of excessive local wind variability), only have the KNMI quality control flag set. On the other hand, WVCs that are rejected due to sea ice, have both the KNMI quality control flag and the ice flag set.

If the variational QC flag, Fortran bit 16, is set, the wind vector in the WVC is rejected during ambiguity removal due to spatial inconsistency. A wind solution is present, but it may be suspect.

It is recommended not to use WVCs with the KNMI quality control flag or the variational quality control flag set. See [3] for more information on product reliability.

The 'likelihood computed for solution' (descriptor 021104) actually contains the  $log_{10}$  of the calculated likelihood for the wind solution. This is done since otherwise values close to zero will be rounded to zero in the BUFR encoding. In order to recalculate the probability, the user should compute 10 to the power <value from BUFR>.

### 6. References

- [1] OSI SAF, Product Requirements Document, version 3.7 SAF/OSI/CDOP2/M-F/MGT/PL/2-001, 2016
- [2] OSI SAF, Service Specification Document, version 2.9 SAF/OSI/CDOP2/M-F/MGT/PL/2-003, 2016
- [3] OSI SAF, Algorithm Theoretical Basis Document for the OSI SAF wind products, version 1.4 SAF/OSI/CDOP2/KNMI/SCI/MA/197, 2017 (\*)
- [4] Met Office, UK, *ERS Products, WMO FM94 BUFR format* ER-IS-UKM-GS-0001, Version 4, Issue 2, 16 February 2001
- [5] Vogelzang, J., A. Verhoef, J. Verspeek, J. de Kloe and A. Stoffelen, AWDP User Manual and Reference Guide, version 3.0 NWPSAF-KN-UD-005, 2016 (\*)
- [6] Verhoef, A., J. Vogelzang and A. Stoffelen, ERS L2 winds Data Record validation report SAF/OSI/CDOP2/KNMI/TEC/RP/278, 2016 (\*)
- Belmonte Rivas, M., A. Stoffelen, J. Verspeek, A. Verhoef, X. Neyt and C. Anderson *Cone metrics: a new tool for the intercomparison of scatterometer records* IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2016, doi: 10.1109/JSTARS.2017.2647842
- [8] Verspeek, J., A. Stoffelen, A. Verhoef and M. Portabella, Improved ASCAT Wind Retrieval Using NWP Ocean Calibration IEEE Transactions on Geoscience and Remote Sensing, 50, 7, 2488-2494, 2012, doi:10.1109/TGRS.2011.2180730
- [9] Crapolicchio, R. and P. Lecomte, The ERS Wind Scatterometer mission: routine monitoring activities and results Proceeding of Emerging Scatterometer Application workshop, ESTEC, Noordwijk, The Netherlands 5–7 October 1998, ESA-SP-424, 1998
- [10] Crapolicchio, R., G. De Chiara, A. Paciucci and P. Lecomte, The ERS-2 scatterometer: Instrument and data performances assessment since the beginning of the mission Proceeding of Envisat Symposium, Montreux, Switzerland 23-27 April 2007, ESA-SP-636, 2007
- [11] Abdalla, S. and H. Hersbach, The technical support for global validation of ERS Wind and Wave Products at ECMWF ECMWF final report for ESA contract 18212/04/I-OL, 2007
- [12] Dee, D. et al., The ERA-Interim reanalysis: configuration and performance of the data assimilation system Quarterly Journal of the Royal Meteorological Society, 137: 553–597, 2011, doi:10.1002/qj.828
- [13] Hersbach, H., Assimilation of scatterometer data as equivalent-neutral wind ECMWF Technical Memorandum 629, 2010
- [14] J. de Kloe, A. Stoffelen and A. Verhoef, Improved use of scatterometer measurements by using stress-equivalent reference winds IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., under review, 2016
- [15] Lin, W., M. Portabella, A. Stoffelen, J. Vogelzang, and A. Verhoef, ASCAT wind quality under high subcell wind variability conditions
   J. Geophys. Res. Oceans, 20, 8, 5804–5819, 2015, doi:10.1002/2015JC010861
- [16] Verspeek, J. and A. Stoffelen, CMOD7,
   OSI SAF report SAF/OSI/CDOP2/KNMI/TEC/RP/237, 2015 (\*)
- [17] Thesis Scatterometry by Ad Stoffelen, 1998 (\*)

 Belmonte Rivas, M., J. Verspeek, A. Verhoef and A. Stoffelen, Bayesian sea ice detection with the Advanced Scatterometer IEEE Transactions on Geoscience and Remote Sensing, 50, 7, 2649-2657, 2012, doi:10.1109/TGRS.2011.2182356

References marked with a (\*) are available on http://www.knmi.nl/scatterometer/publications/.

## 7. Abbreviations and acronyms

| 2DVAR    | Two-dimensional Variational Ambiguity Removal                           |
|----------|-------------------------------------------------------------------------|
| AMI      | Active Microwave Instrument                                             |
| ATBD     | Algorithm Theoretical Basis Document                                    |
| AR       | Ambiguity Removal                                                       |
| ASCAT    | Advanced Scatterometer                                                  |
| ASPS     | Advanced Scatterometer Processing System                                |
| AWDP     | ASCAT Wind Data Processor                                               |
| BUFR     | Binary Universal Format Representation                                  |
| CDR      | Climate Data Record                                                     |
| DLI      | Downward Long wave Irradiance                                           |
| ECMWF    | European Centre for Medium-Range Weather Forecasts                      |
| ERA      | ECMWF re-analysis                                                       |
| ERS      | European Remote-Sensing Satellite                                       |
| ESA      | European Space Agency                                                   |
| EUMETSAT | European Organisation for the Exploitation of Meteorological Satellites |
| GMF      | Geophysical Model Function                                              |
| KNMI     | Royal Netherlands Meteorological Institute                              |
| Metop    | Meteorological operational satellite                                    |
| MLE      | Maximum Likelihood Estimator                                            |
| NASA     | National Aeronautics and Space Administration (USA)                     |
| NetCDF   | Network Common Data Form                                                |
| NOAA     | National Oceanic and Atmospheric Administration (USA)                   |
| NSCAT    | NASA Scatterometer                                                      |
| NWP      | Numerical Weather Prediction                                            |
| OSI SAF  | Ocean and Sea Ice SAF                                                   |
| QC       | Quality Control                                                         |
| QuikSCAT | US Quick Scatterometer mission carrying the SeaWinds scatterometer      |
| SAF      | Satellite Application Facility                                          |
| SCIRoCCo | ESA SCatterometer InstRument Competence Centre                          |
| SSI      | Surface Solar Irradiance                                                |
| SST      | Sea Surface Temperature                                                 |
| и        | West-to-east (zonal) wind component                                     |
| V        | South-to-north (meridional) wind component                              |
| UWI      | ERS scatterometer User Wind Data                                        |
| WMO      | World Meteorological Organisation                                       |
| WVC      | Wind Vector Cell                                                        |

## 8. Appendix A: BUFR data descriptors

| Number | Descriptor | Parameter                                           | Unit        |
|--------|------------|-----------------------------------------------------|-------------|
| 1      | 001033     | Identification Of Originating/Generating Centre     | Code Table  |
| 2      | 001034     | Identification Of Originating/Generating Sub-Centre | Code Table  |
| 3      | 025060     | Software Identification                             | Numeric     |
| 4      | 001007     | Satellite Identifier                                | Code Table  |
| 5      | 002019     | Satellite Instruments                               | Code Table  |
| 6      | 001012     | Direction Of Motion Of Moving Observing Platform    | Degree True |
| 7      | 004001     | Year                                                | Year        |
| 8      | 004002     | Month                                               | Month       |
| 9      | 004003     | Day                                                 | Day         |
| 10     | 004004     | Hour                                                | Hour        |
| 11     | 004005     | Minute                                              | Minute      |
| 12     | 004006     | Second                                              | Second      |
| 13     | 005001     | Latitude (High Accuracy)                            | Degree      |
| 14     | 006001     | Longitude (High Accuracy)                           | Degree      |
| 15     | 005033     | Pixel Size On Horizontal-1                          | m           |
| 16     | 005040     | Orbit Number                                        | Numeric     |
| 17     | 006034     | Cross Track Cell Number                             | Numeric     |
| 18     | 010095     | Height Of Atmosphere Used                           | m           |
| 19     | 021157     | Loss Per Unit Length Of Atmosphere Used             | dB/m        |
| 20     | 021150     | Beam Collocation                                    | Flag Table  |
| 21     | 008085     | Beam Identifier                                     | Code Table  |
| 22     | 002111     | Radar Incidence Angle                               | Degree      |
| 23     | 002134     | Antenna Beam Azimuth                                | Degree      |
| 24     | 021062     | Backscatter                                         | dB          |
| 25     | 021063     | Radiometric Resolution (Noise Value)                | %           |
| 26     | 021158     | ASCAT Kp Estimate Quality                           | Code Table  |
| 27     | 021159     | ASCAT Sigma-0 Usability                             | Code Table  |
| 28     | 021160     | ASCAT Use Of Synthetic Data                         | Numeric     |
| 29     | 021161     | ASCAT Synthetic Data Quality                        | Numeric     |
| 30     | 021162     | ASCAT Satellite Orbit And Attitude Quality          | Numeric     |
| 31     | 021163     | ASCAT Solar Array Reflection Contamination          | Numeric     |
| 32     | 021164     | ASCAT Telemetry Presence And Quality                | Numeric     |
| 33     | 021165     | ASCAT Extrapolated Reference Function               | Numeric     |
| 34     | 021166     | ASCAT Land Fraction                                 | Numeric     |
| 35     | 008085     | Beam Identifier                                     | Code Table  |
| 36     | 002111     | Radar Incidence Angle                               | Degree      |
| 37     | 002134     | Antenna Beam Azimuth                                | Degree      |
| 38     | 021062     | Backscatter                                         | dB          |
| 39     | 021063     | Radiometric Resolution (Noise Value)                | %           |
| 40     | 021158     | ASCAT Kp Estimate Quality                           | Code Table  |
| 41     | 021159     | ASCAT Sigma-0 Usability                             | Code Table  |
| 42     | 021160     | ASCAT Use Of Synthetic Data                         | Numeric     |
| 43     | 021161     | ASCAT Synthetic Data Quality                        | Numeric     |
| 44     | 021162     | ASCAT Satellite Orbit And Attitude Quality          | Numeric     |
| 45     | 021163     | ASCAT Solar Array Reflection Contamination          | Numeric     |
| 46     | 021164     | ASCAT Telemetry Presence And Quality                | Numeric     |
| 47     | 021165     | ASCAT Extrapolated Reference Function               | Numeric     |
| 48     | 021166     | ASCAT Land Fraction                                 | Numeric     |
| 49     | 008085     | Beam Identifier                                     | Code Table  |
| 50     | 002111     | Radar Incidence Angle                               | Degree      |
| 51     | 002134     | Antenna Beam Azimuth                                | Degree      |

| Number | Descriptor | Parameter                                           | Unit        |
|--------|------------|-----------------------------------------------------|-------------|
| 52     | 021062     | Backscatter                                         | dB          |
| 53     | 021063     | Radiometric Resolution (Noise Value)                | %           |
| 54     | 021158     | ASCAT Kp Estimate Quality                           | Code Table  |
| 55     | 021159     | ASCAT Sigma-0 Usability                             | Code Table  |
| 56     | 021160     | ASCAT Use Of Synthetic Data                         | Numeric     |
| 57     | 021161     | ASCAT Synthetic Data Quality                        | Numeric     |
| 58     | 021162     | ASCAT Satellite Orbit And Attitude Quality          | Numeric     |
| 59     | 021163     | ASCAT Solar Array Reflection Contamination          | Numeric     |
| 60     | 021164     | ASCAT Telemetry Presence And Quality                | Numeric     |
| 61     | 021165     | ASCAT Extrapolated Reference Function               | Numeric     |
| 62     | 021166     | ASCAT Land Fraction                                 | Numeric     |
| 63     | 025060     | Software Identification                             | Numeric     |
| 64     | 025062     | Database Identification                             | Numeric     |
| 65     | 040001     | Surface Soil Moisture (Ms)                          | %           |
| 66     | 040002     | Estimated Error In Surface Soil Moisture            | %           |
| 67     | 021062     | Backscatter                                         | dB          |
| 68     | 021151     | Estimated Error In Sigma0 At 40 Deg Incidence Angle | dB          |
| 69     | 021152     | Slope At 40 Deg Incidence Angle                     | dB/Degree   |
| 70     | 021153     | Estimated Error In Slope At 40 Deg Incidence Angle  | dB/Degree   |
| 71     | 021154     | Soil Moisture Sensitivity                           | dB          |
| 72     | 021062     | Backscatter                                         | dB          |
| 73     | 021088     | Wet Backscatter                                     | dB          |
| 74     | 040003     | Mean Surface Soil Moisture                          | Numeric     |
| 75     | 040004     | Rain Fall Detection                                 | Numeric     |
| 76     | 040005     | Soil Moisture Correction Flag                       | Flag Table  |
| 77     | 040006     | Soil Moisture Processing Flag                       | Flag Table  |
| 78     | 040007     | Soil Moisture Quality                               | %           |
| 79     | 020065     | Snow Cover                                          | %           |
| 80     | 040008     | Frozen Land Surface Fraction                        | %           |
| 81     | 040009     | Inundation And Wetland Fraction                     | %           |
| 82     | 040010     | Topographic Complexity                              | %           |
| 83     | 025060     | Software Identification                             | Numeric     |
| 84     | 001032     | Generating Application                              | Code Table  |
| 85     | 011082     | Model Wind Speed At 10 m                            | m/s         |
| 86     | 011081     | Model Wind Direction At 10 m                        | Degree True |
| 87     | 020095     | Ice Probability                                     | Numeric     |
| 88     | 020096     | Ice Age (A-Parameter)                               | dB          |
| 89     | 021155     | Wind Vector Cell Quality                            | Flag Table  |
| 90     | 021101     | Number Of Vector Ambiguities                        | Numeric     |
| 91     | 021102     | Index Of Selected Wind Vector                       | Numeric     |
| 92     | 031001     | Delayed Descriptor Replication Factor               | Numeric     |
| 93     | 011012     | Wind Speed At 10 m                                  | m/s         |
| 94     | 011011     | Wind Direction At 10 m                              | Degree True |
| 95     | 021156     | Backscatter Distance                                | Numeric     |
| 96     | 021104     | Likelihood Computed For Solution                    | Numeric     |
| 97     | 011012     | Wind Speed At 10 m                                  | m/s         |
| 98     | 011011     | Wind Direction At 10 m                              | Degree True |
| 99     | 021156     | Backscatter Distance                                | Numeric     |
| 100    | 021104     | Likelihood Computed For Solution                    | Numeric     |

Note that descriptor numbers 93-96 can be repeated 1 to 144 times, depending on the value of the Delayed Descriptor Replication Factor (descriptor number 92)

### 9. Appendix B: NetCDF data format

The wind products are also available in the NetCDF format, with the following characteristics:

- The data format meets the NetCDF Climate and Forecast Metadata Convention version 1.6 (<u>http://cfconventions.org/</u>).
- The data contain, contrary to the BUFR data, only level 2 wind and sea ice information, no sigma0
  nor soil moisture information. The aim was to create a compact and easy to handle product for
  oceanographic and climatological users.
- The data contain only the selected wind solutions, no ambiguity information.
- The wind directions are in oceanographic rather than meteorological convention (see section 5.1)
- The format is identical for ERS, ASCAT, SeaWinds and any other scatterometer data.
- The data has file sizes somewhat smaller than those of the corresponding BUFR data (e.g., one orbit file of 25 km wind data is 1.2 MB in BUFR and 1 MB in NetCDF). When compressed with gzip, the size of one file in NetCDF reduces to 0.3 MB.

The file name convention for the gzipped NetCDF product is

scatt\_YYYYMMDD\_HHMMSS\_SAT\_ORBIT\_ T\_SMPL\_VERS\_CONT.I2.nc.gz or

OR1ERW025\_YYYYMMDD\_HHMMSS\_ORBIT\_ERSX.nc.gz (from EUM Data Centre) where the meaning of the fields is identical to those in the BUFR file names (see section 5.2). The VERS part of the file name denotes the AWDP software version (3000 for this data record). A file name example is: scatt\_19920826\_193131\_ers1\_\_05828\_o\_250\_3000\_ovw.l2.nc.gz.

Below are some meta data contained in the NetCDF data files:

```
dimensions:
        NUMROWS = 1597;
        NUMCELLS = 19;
variables:
        int time(NUMROWS, NUMCELLS) ;
                time:long_name = "time" ;
                time:units = "seconds since 1990-01-01 00:00:00" ;
        int lat(NUMROWS, NUMCELLS) ;
                lat:long_name = "latitude" ;
                lat:units = "degrees_north" ;
        int lon(NUMROWS, NUMCELLS) ;
                lon:long_name = "longitude" ;
                lon:units = "degrees_east" ;
        short wvc_index(NUMROWS, NUMCELLS) ;
                wvc_index:long_name = "cross track wind vector cell number" ;
                wvc_index:units = "1" ;
        short model_speed(NUMROWS, NUMCELLS) ;
                model_speed:long_name = "model wind speed at 10 m" ;
                model_speed:units = "m s-1" ;
        short model_dir(NUMROWS, NUMCELLS) ;
                model_dir:long_name = "model wind direction at 10 m" ;
                model_dir:units = "degree" ;
        short ice_prob(NUMROWS, NUMCELLS) ;
                ice_prob:long_name = "ice probability" ;
                ice_prob:units = "1" ;
        short ice_age(NUMROWS, NUMCELLS) ;
                ice_age:long_name = "ice age (a-parameter)" ;
                ice_age:units = "dB" ;
        int wvc_quality_flag(NUMROWS, NUMCELLS) ;
                wvc_quality_flag:long_name = "wind vector cell quality" ;
```

```
wvc_quality_flag:flag_masks = 64, 128, 256, 512, 1024, 2048, 4096,
8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304 ;
                wvc_quality_flag:flag_meanings = "distance_to_gmf_too_large"
data_are_redundant no_meteorological_background_used rain_detected
rain_flag_not_usable small_wind_less_than_or_equal_to_3_m_s
large_wind_greater_than_30_m_s wind_inversion_not_successful
some_portion_of_wvc_is_over_ice some_portion_of_wvc_is_over_land
variational_quality_control_fails knmi_quality_control_fails
product_monitoring_event_flag product_monitoring_not_used
any_beam_noise_content_above_threshold poor_azimuth_diversity
not_enough_good_sigma0_for_wind_retrieval" ;
        short wind_speed(NUMROWS, NUMCELLS) ;
                wind_speed:long_name = "wind speed at 10 m" ;
                wind_speed:units = "m s-1" ;
        short wind_dir(NUMROWS, NUMCELLS) ;
                wind_dir:long_name = "wind direction at 10 m" ;
                wind_dir:units = "degree" ;
        short bs_distance(NUMROWS, NUMCELLS) ;
                bs_distance:long_name = "backscatter distance" ;
                bs_distance:units = "1" ;
// global attributes:
                :title = "ERS-1 SCAT Level 2 25.0 km Ocean Surface Wind Vector
Product" ;
                :title_short_name = "SCATT-L2-25km" ;
                :Conventions = "CF-1.6" ;
                :institution = "EUMETSAT/OSI SAF/KNMI" ;
                :source = "ERS-1 SCAT" ;
                :software_identification_level_1 = 0 ;
                :instrument_calibration_version = 0 ;
                :software_identification_wind = 3001 ;
                :pixel_size_on_horizontal = "25.0 km";
                :service_type = "N/A" ;
                :processing_type = "R" ;
                :contents = "ovw" ;
                :granule_name =
"scatt_19960602_122604_ers1___25535_o_250_ovw.l2.nc" ;
                :processing_level = "L2" ;
                :orbit_number = 25535 ;
                :start_date = "1996-06-02" ;
                :start_time = "12:26:04" ;
                :stop_date = "1996-06-02" ;
                :stop_time = "14:06:37" ;
                :equator_crossing_longitude = "" ;
                :equator_crossing_date = "" ;
                :equator_crossing_time = "" ;
                :rev_orbit_period = "" ;
                :orbit_inclination = "" ;
                :history = "N/A" ;
                :references = "ERS Scatterometer Product User Manual,
http://www.osi-saf.org/, http://www.knmi.nl/scatterometer/" ;
                :comment = "Orbit period and inclination are constant values. All
wind directions in oceanographic convention (0 deg. flowing North)" ;
                :creation_date = "2016-11-03" ;
                :creation_time = "09:57:40" ;
```

The interpretation of the wvc\_quality\_flag integer value is as follows. The flag\_masks correspond to certain flag bits that may or may not be set. This means that e.g. the 'flag\_mask' 64 corresponds to 'distance\_to\_gmf\_too\_large' and so on. The flag masks are powers of 2. The way to handle this is to take the integer value of the wvc\_quality\_flag and find out how it is composed of powers of 2. Suppose that one wants to test if the 'knmi\_quality\_control\_fails' flag bit is set. This is the 12<sup>th</sup> item in the flag list, corresponding to an integer value of 131072 (=2^17) in the flag\_masks table. You can test if this value is set using the function:

#### (integer flag value / 2^17) modulo 2

which gives 1 if the 'knmi\_quality\_control\_fails' is set and 0 if the 'knmi\_quality\_control\_fails' is not set. The other flag bits can be tested in the same way.

### 10. Appendix C: Data gaps and number of files

The ERS-1 Data Record starts at orbit 3285 on 2<sup>nd</sup> March 1992 and ends at orbit 25542 on 3<sup>rd</sup> June 1996. The ERS-2 Data Record starts at orbit 4780 on 20<sup>th</sup> March 1996 and ends at orbit 30016 on 15<sup>th</sup> January 2001. Unfortunately many orbits are missing, sometimes isolated orbits and sometimes for longer periods. The tables below show the gaps with a length of at least 10 orbits in the Data Records and the number of files (orbits) per year, respectively.

The gaps reported here are based on the resulting retrieved winds from the reprocessing. Information about instrument unavailabilities is also provided by ESA on

https://earth.esa.int/web/sppa/mission-performance/esa-missions/ers-1/scatterometer/missionhighlights and

https://earth.esa.int/web/sppa/mission-performance/esa-missions/ers-2/scatterometer/missionhighlights.

#### ERS-1

| Start date | End date   | Last orbit<br>before gap | First orbit<br>after gap | Number of<br>missing orbits |
|------------|------------|--------------------------|--------------------------|-----------------------------|
| 1992-03-30 | 1992-04-14 | 3696                     | 3910                     | 213                         |
| 1992-04-30 | 1992-05-03 | 4140                     | 4183                     | 42                          |
| 1992-05-06 | 1992-05-07 | 4226                     | 4240                     | 13                          |
| 1992-05-23 | 1992-05-24 | 4469                     | 4483                     | 13                          |
| 1992-05-29 | 1992-05-30 | 4555                     | 4569                     | 13                          |
| 1992-06-03 | 1992-06-04 | 4626                     | 4641                     | 14                          |
| 1992-06-13 | 1992-06-17 | 4769                     | 4814                     | 44                          |
| 1992-06-25 | 1992-06-29 | 4938                     | 4995                     | 56                          |
| 1992-07-19 | 1992-07-24 | 5277                     | 5349                     | 71                          |
| 1992-08-09 | 1992-08-10 | 5579                     | 5593                     | 13                          |
| 1992-08-19 | 1992-08-21 | 5730                     | 5748                     | 17                          |
| 1992-08-28 | 1992-08-29 | 5845                     | 5867                     | 21                          |
| 1992-09-02 | 1992-09-03 | 5925                     | 5945                     | 19                          |
| 1992-09-18 | 1992-09-20 | 6159                     | 6181                     | 21                          |
| 1992-09-30 | 1992-10-01 | 6325                     | 6338                     | 12                          |
| 1992-10-01 | 1992-10-02 | 6338                     | 6349                     | 10                          |
| 1992-10-09 | 1992-10-14 | 6454                     | 6524                     | 69                          |
| 1992-10-17 | 1992-10-19 | 6562                     | 6593                     | 30                          |
| 1992-11-15 | 1992-11-16 | 6982                     | 6993                     | 10                          |
| 1992-11-24 | 1992-11-25 | 7117                     | 7131                     | 13                          |
| 1992-12-04 | 1992-12-06 | 7252                     | 7289                     | 36                          |
| 1993-01-14 | 1993-01-17 | 7839                     | 7891                     | 51                          |
| 1993-01-18 | 1993-01-19 | 7905                     | 7916                     | 10                          |
| 1993-02-03 | 1993-02-05 | 8134                     | 8162                     | 27                          |
| 1993-02-07 | 1993-02-08 | 8190                     | 8205                     | 14                          |
| 1993-02-17 | 1993-02-18 | 8333                     | 8348                     | 14                          |
| 1993-03-04 | 1993-03-05 | 8542                     | 8558                     | 15                          |
| 1993-03-19 | 1993-03-20 | 8763                     | 8777                     | 13                          |
| 1993-03-28 | 1993-03-29 | 8892                     | 8906                     | 13                          |
| 1993-04-06 | 1993-04-07 | 9021                     | 9035                     | 13                          |
| 1993-04-11 | 1993-04-12 | 9092                     | 9107                     | 14                          |
| 1993-05-15 | 1993-05-17 | 9580                     | 9599                     | 18                          |
| 1993-05-17 | 1993-05-18 | 9599                     | 9613                     | 13                          |
| 1993-05-22 | 1993-05-23 | 9679                     | 9694                     | 14                          |
| 1993-05-28 | 1993-05-31 | 9764                     | 9799                     | 34                          |
| 1993-06-05 | 1993-06-07 | 9868                     | 9899                     | 30                          |
| 1993-06-28 | 1993-06-30 | 10205                    | 10230                    | 24                          |
| 1993-07-01 | 1993-07-02 | 10244                    | 10255                    | 10                          |

#### SAF/OSI/CDOP2/KNMI/TEC/MA/279

| Start date | End date   | Last orbit<br>before gap | First orbit<br>after gap | Number of missing orbits |
|------------|------------|--------------------------|--------------------------|--------------------------|
| 1993-07-24 | 1993-07-25 | 10578                    | 10596                    | 17                       |
| 1993-07-27 | 1993-07-28 | 10616                    | 10634                    | 17                       |
| 1993-08-04 | 1993-08-05 | 10733                    | 10744                    | 10                       |
| 1993-08-21 | 1993-08-22 | 10977                    | 10997                    | 19                       |
| 1993-08-29 | 1993-08-30 | 11090                    | 11102                    | 11                       |
| 1993-08-31 | 1993-09-01 | 11119                    | 11130                    | 10                       |
| 1993-10-01 | 1993-10-02 | 11564                    | 11584                    | 19                       |
| 1993-10-03 | 1993-10-04 | 11586                    | 11604                    | 17                       |
| 1993-10-10 | 1993-10-11 | 11694                    | 11712                    | 17                       |
| 1993-10-18 | 1993-10-19 | 11805                    | 11817                    | 11                       |
| 1993-10-25 | 1993-10-26 | 11907                    | 11918                    | 10                       |
| 1993-11-28 | 1993-11-28 | 12387                    | 12399                    | 11                       |
| 1994-01-13 | 1994-01-14 | 13050                    | 13068                    | 17                       |
| 1994-01-15 | 1994-01-17 | 13087                    | 13106                    | 18                       |
| 1994-01-22 | 1994-01-23 | 13184                    | 13195                    | 10                       |
| 1994-01-29 | 1994-01-30 | 13286                    | 13297                    | 10                       |
| 1994-03-31 | 1994-04-06 | 14150                    | 14236                    | 85                       |
| 1994-04-23 | 1994-04-25 | 14483                    | 14514                    | 30                       |
| 1994-09-27 | 1994-09-28 | 16741                    | 16753                    | 11                       |
| 1994-10-06 | 1994-10-07 | 16869                    | 16881                    | 11                       |
| 1995-03-02 | 1995-03-02 | 18973                    | 18984                    | 10                       |
| 1995-03-21 | 1995-03-22 | 19246                    | 19261                    | 14                       |
| 1995-04-18 | 1995-04-20 | 19658                    | 19673                    | 14                       |
| 1995-04-21 | 1995-04-23 | 19700                    | 19715                    | 14                       |
| 1995-04-24 | 1995-04-26 | 19743                    | 19758                    | 14                       |
| 1995-05-10 | 1995-05-12 | 19972                    | 19987                    | 14                       |
| 1995-07-14 | 1995-07-15 | 20889                    | 20904                    | 14                       |
| 1995-07-17 | 1995-07-18 | 20932                    | 20947                    | 14                       |
| 1995-08-01 | 1995-08-03 | 21161                    | 21176                    | 14                       |
| 1995-08-12 | 1995-08-13 | 21304                    | 21319                    | 14                       |
| 1995-08-15 | 1995-08-16 | 21347                    | 21362                    | 14                       |
| 1995-08-26 | 1995-08-27 | 21510                    | 21524                    | 13                       |
| 1995-08-31 | 1995-09-01 | 21576                    | 21591                    | 14                       |
| 1995-09-06 | 1995-09-07 | 21662                    | 21677                    | 14                       |
| 1995-09-07 | 1995-09-08 | 21677                    | 21691                    | 13                       |
| 1995-09-09 | 1995-09-10 | 21705                    | 21719                    | 13                       |
| 1995-09-10 | 1995-09-11 | 21720                    | 21734                    | 13                       |
| 1995-09-11 | 1995-09-13 | 21747                    | 21762                    | 14                       |
| 1995-09-13 | 1995-09-14 | 21762                    | 21781                    | 18                       |
| 1995-09-16 | 1995-09-17 | 21805                    | 21823                    | 17                       |

| Year  | Number<br>of files |
|-------|--------------------|
| 1992  | 3335               |
| 1993  | 4438               |
| 1994  | 4841               |
| 1995  | 4740               |
| 1996  | 2118               |
| Total | 19472              |

#### ERS-2

| Start date | End date   | Last orbit before gap | First orbit<br>after gap | Number of<br>missing orbits |
|------------|------------|-----------------------|--------------------------|-----------------------------|
| 1996-04-16 | 1996-04-17 | 5173                  | 5187                     | 13                          |
| 1996-06-26 | 1996-06-27 | 6191                  | 6206                     | 14                          |
| 1996-07-04 | 1996-07-05 | 6311                  | 6323                     | 11                          |
| 1996-07-11 | 1996-07-12 | 6406                  | 6419                     | 12                          |
| 1996-07-15 | 1996-07-26 | 6459                  | 6616                     | 156                         |
| 1996-08-04 | 1996-08-06 | 6754                  | 6775                     | 20                          |
| 1996-09-02 | 1996-09-03 | 7162                  | 7176                     | 13                          |
| 1996-09-23 | 1996-10-02 | 7461                  | 7592                     | 130                         |
| 1997-02-13 | 1997-02-15 | 9518                  | 9542                     | 23                          |
| 1997-06-18 | 1997-06-19 | 11301                 | 11312                    | 10                          |
| 1997-08-03 | 1997-08-04 | 11956                 | 11973                    | 16                          |
| 1998-02-20 | 1998-02-21 | 14839                 | 14857                    | 17                          |
| 1998-06-03 | 1998-06-07 | 16311                 | 16362                    | 50                          |
| 1998-11-01 | 1998-11-03 | 18473                 | 18497                    | 23                          |
| 1998-11-17 | 1998-11-18 | 18701                 | 18717                    | 15                          |
| 1998-12-11 | 1998-12-12 | 19041                 | 19064                    | 22                          |
| 1998-12-14 | 1998-12-15 | 19087                 | 19098                    | 10                          |
| 1999-09-01 | 1999-09-02 | 22820                 | 22831                    | 10                          |
| 1999-11-17 | 1999-11-18 | 23928                 | 23941                    | 12                          |
| 1999-12-31 | 2000-01-02 | 24555                 | 24586                    | 30                          |
| 2000-02-04 | 2000-02-05 | 25056                 | 25067                    | 10                          |
| 2000-02-07 | 2000-02-10 | 25095                 | 25147                    | 51                          |
| 2000-02-16 | 2000-02-17 | 25224                 | 25239                    | 14                          |
| 2000-03-24 | 2000-03-25 | 25754                 | 25772                    | 17                          |
| 2000-03-27 | 2000-03-30 | 25800                 | 25841                    | 40                          |
| 2000-05-29 | 2000-05-30 | 26707                 | 26723                    | 15                          |
| 2000-06-30 | 2000-07-06 | 27156                 | 27241                    | 84                          |
| 2000-10-07 | 2000-10-10 | 28578                 | 28624                    | 45                          |
| 2000-10-24 | 2000-10-25 | 28822                 | 28835                    | 12                          |

| Year  | Number<br>of files |
|-------|--------------------|
| 1996  | 3457               |
| 1997  | 4995               |
| 1998  | 4938               |
| 1999  | 5060               |
| 2000  | 4805               |
| 2001  | 215                |
| Total | 23470              |