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Summary 
 
Using the scatterometer data from the ERS-2 satellite, a new classification algorithm for sea/ice 
discrimination, based on Bayesian statistics is introduced. Tests for inner consistency are 
described and the results discussed. The influence of spatial and temporal averaging is examined. 
Also a comparison with ice maps obtained by other models and measurements is made. It is 
compared with IFREMER ice maps for ERS and Quikscat, and with surface temperature data 
retrieved from ECMWF. This algorithm may be applied to the ASCAT scatterometer on board of 
the MetOp satellites as well. 
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1 Introduction 
 
Scatterometers are active remote sensing systems whose main application is to measure the wind 
velocity and direction above sea. The resulting wind fields can be used as stand-alone product or 
for assimilation in a numerical weather prediction. Quality control on the measurements is 
necessary to avoid assimilation of non-valid data. In most cases this quality control is 
straightforward, e.g. the data is missing, or the measurement is above land where no wind 
information can be retrieved. In other cases the quality control is not so simple, e.g. in the 
situation of ice contamination. Ice has very different backscatter characteristics from water. When 
a substantial part of the footprint is covered by ice and the other part is water, the measurement 
will not give any information that is useful for wind retrieval. A sea/ice discrimination algorithm 
can help in the quality control procedure to flag a measurement as non-valid (for wind retrieval). 
Apart from this, the output of the sea/ice discrimination algorithm can be seen as a product in 
itself. It can be used to monitor the development of the ice edge of the Arctic and Antarctic region 
on a time scale of days. Also it can be used to distinguish between different types of ice, of which 
the most prominent are first year ice and multiyear ice. A third application is the use of the 
algorithm for calibration/validation of the scatterometer instrument, because ice can be a static 
and stable source with isotropic backscatter properties. 
 
The differences in backscatter properties between water and ice can be used to infer 
discrimination criteria. Firstly, ice has isotropic backscatter properties, it doesn't matter from 
which azimuth angle the scatterometer looks at the ice, the backscatter will be the same for a flat 
surface. Water on the other hand has anisotropic backscatter properties, which fact is used to 
retrieve wind direction. Secondly, ice has a characteristic function of backscatter versus incidence 
angle (σ0  versus θ) which also differs from water. Thirdly, ice has specific backscatter properties 
regarding the polarisation of the incoming and reflected beam. See e.g. [Gohin, et al (1995)], 
(Ezraty and Cavanié (1997)]. 
 
Traditionally people have used simple parameters representing the geophysical properties, like an 
anisotropy coefficient or a slope parameter. Another approach is to define a geophysical model 
function (GMF) that describes the measurement backscatter data as function of one or more 
physical parameters. This method is used for wind retrieval but can be equally well applied for ice 
retrieval. It has the advantage that the full information content of the measurements is used. We 
applied this method to ERS [Haan de, Stoffelen (2001)] and it is planned to be used for the 
ASCAT scatterometer. Note: Polarisation properties cannot be used for ERS and ASCAT because 
of the fixed polarisation of the transmit/receive antennae. 
 
For wind the backscatter geophysical model function naturally is dominated by two parameters, 
being the wind speed V and wind direction φ. Using this assumption the well-known cone shaped 
geophysical model function is empirically derived. For ice it is less obvious how many physical 
parameters define the backscatter. It is likely to be many, because many types of ice can be 
defined, each with its own backscatter properties. To give some examples, ice may contain a 
certain amount of salt water, it may be more or less porous, deformed, covered with snow, it can 
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be molten en refrozen giving a different ice structure, ice shelves can be broken into peaces (pan-
cakes) which are frozen together later on. Under the assumption of isotropic backscattering all 
(σ0-triplets lie in the plane σ0

fore = σ0
aft  in σ0-space) plots of measured triplets in σ0-space show 

that for each node all ice points lie on a straight line. This means that ice is described with one 
parameter (the coordinate along the ice line). 
 
For a fixed node (fixed θ) the ice GMF is only dependent on the scalar a, defining the position on 
the ice curve. Along the ice curve a comoving coordinate system is defined, where the 
coordinates are denoted (a, b, c). a is the distance along the ice curve, b is the distance from the 
plane σ0

fore = σ0
aft and c is the third coordinate perpendicular to the ice curve and lying in the 

plane σ0
fore = σ0

aft. In practice the ice curve can be accurately approximated by a line: 
 

eaOa rr
+=)(0σ  

Equation 1-1 
 
The abscissa along the ice line a has a physical meaning representing the type of ice. The distance 
to the ice line dice is now defined as: 
 

22 cbdice +=  
Equation 1-2 

 
We assume σ0  in dB here, but this is not very relevant. Firstly the origin of the ice line is 
determined using the mean of ice characteristic backscatter function fice(θ) Then the slope is 
determined using interpolation on the measurement ensemble. As a result of this procedure the 
mean values of a, b, and c will be zero. Scaling factors are applied to match the standard 
deviation of each parameter, so that the value of the parameters will have the same physical 
meaning independent of the node number. Also a scaling factor for the distance to the ice line dice 
is applied so that the distance to the ice line is always measured in units of the standard deviation 
of b and c, and becomes independent of the node number. For a detailed description of the 
derivation of the ice model see [Haan de, Stoffelen (2001)]. In Figure 1 the wind cone and ice line 
are depicted in σ0 -space together with some measurements. 
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Figure 1 Wind cone (blue) and ice line (red) in z-space. Also some data points are shown (black)
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2 Icemodel Description 
 
2.1 Sea/ice classification 
 
The sea ice classification as described in [Haan de, Stoffelen (2001)] has been extended and 
modified using Bayesian statistics. The original classification defines four classes for a σ0-triplet 
measurement (Table 1). 
 
 

Class Description Color 
(a) Water Blue 
(b) Ice Red 
(c) either Water or Ice Orange 
(d) Neither Water nor Ice Green 

 
Table 1 Basic Ice/Sea lasses. 

 
The colors in this table refer to the output bitmaps in which the classes are indicated by color. 
This classification is further refined using historical data and using spatial averaging, resulting in 
seven subclasses in total (Table 2). 
 

Class Description Color 
(a1) probably Water Purple 
(a2) Water Blue 
(b1) probably Ice (not enough measurements) Green 
(b2) probably Ice (SD too large) Orange 
(b3) Ice Grayscale 
(c) either Water or Ice Red 
(d) neither Water nor Ice Black 

 
Table 2   Basic sea/ice subclasses 

 

 
2.2 Bayesian Statistics 
 
Among others, Bayesian statistics is used in decision theory, where you have a set of 
measurements and a number of "classes" into which the measurements can be categorised. When 
the a priori chance of each class is given, as well as an error model for each class, the a 
posteriori probability that a measurement belongs to a certain class can be calculated using 
Bayes' theorem. In our model we assume there are only two classes, ice and water, with a priori 
probabilities P(ice) and P(water). Because there are only these two classes, the following holds 
true: 

 

1)|()|(
1)()(

=+
=+

xx waterpicep
waterPiceP

 

Equation 2-1 
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here x represents a number of measurements in space and time: 
 
 

 

1,...,0 −= Nxxx  
Equation 2-2 

 
The a posteriori probability on ice p(ice|x) is now given by Bayes' theorem [Breivik et al 
(2001)], [Bernardo (2003)]: 
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Equation 2-3 
 
 
We assume the measurements xi are independent of each other (naive Bayesian statistics): 
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Equation 2-3 now becomes: 

∏∏

∏
=

=

=

=

=

=

+
= 1

0
00

1

0
00

1

0
00

0

)|()()|()(

)|()(
)|( N

i
i

N

i
i

N

i
i

waterxpwaterPicexpiceP

icexpiceP
icep x  

Equation 2-5 
 
The same equation can be written for p(water0|x): 
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Equation 2-6 
Combining the two gives: 
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Equation 2-7 
 
Using the logit function Logit(p) = log(p/(1-p)) this can be written as (ref [Wikipedia 
(2006)]): 
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Equation 2-8 
 
Considering only one pixel x = x0, N=1: 
 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

)|(
)|(

ln)()|(
00

00
000 waterxp

icexp
icePLogitxicepLogit  

Equation 2-9 
 
Afterwards a weighted spatial average P(iceolxo) of the a posteriori probabilities p(iceklxk) is 
taken: 
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Equation 2-10 
 
2.3 Classification Scheme 
 
The new classification uses Bayesian statistics to calculate a certain ice probability for a point, 
using temporal and spatial averaging. Only valid measurements are used in the averaging. The 
subdivision into classes as given in Table 1 reduces to valid measurements (a+b+c) and outliers 
(d): 
 
 
 

Class Description 
(a) either Water or Ice (valid measurements) 
(b) neither Water nor Ice (outliers) 

 
Table 3   Ice/Sea Classes 

 
The outliers are rejected, because they are lying far from both the wind cone and the ice line and 
do not provide information on either sea or sea ice condition. All valid points are given a certain 
weight factor and used in the further calculation accordingly. This results in a (a posteriori) ice 
probability p( icelx) for all useful points. The six remaining subclasses of Table 2 are reduced to 
four subclasses: 
 

Class Description Color 
(α) Water (P(ice) < 0.50) Blue 
(β1) Ice (P(ice) >= 0.50) Grayscale 
(β2) Ice but SD too large Orange 
(γ) Not enough measurements Green 
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Table 4 Ice/Sea Subclasses 
 
 
2.4 Space-time averaging 
It takes some days before the ERS-2 scatterometer has covered the whole of the Arctic region 
and Antarctica. Also in the center nodes of the swath, the discriminative power of the 
measurements is low because the ice line and wind cone coincide there. Therefore in order to 
calculate a complete ice map it is necessary to introduce spatial and temporal averaging of the 
measurements. This has the advantage that a complete coverage of the region is achieved, and 
the ice map is updated whenever the ERS satellite is passing by. A disadvantage is that the 
information is smeared out over space and time so a trade off has to be made in choosing the 
right parameters for reducing spatial and temporal resolution. 

2.4.1 Spatial averaging 

Spatial averaging is done using a 5x5 weight matrix. The measurement under consideration is 
the central pixel of the matrix. The weights are determined using a decay length constant L in 
pixel distance units. 
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Equation 2-11 
 
For the spatial averaging a 5x5 matrix is used giving the weighting factors for the pixels 
surrounding the "central" pixel, the pixel under consideration. In the original sea ice 
classification only a 0 or 1 could be used for an element in the matrix, in the new sea ice 
classification any number may be used. The matrix can be either completely specified by 
the user, or it's elements can be calculated from a spatial decay length parameter which 
is also specified by the user. The weight is then an exponential decaying function from 
the distance to the location of the measurement.  
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Figure 2 Spatial weight function for a decay length L=3 pixels. 
 
In figure 2 the spatial weight function is plotted for a decay length of 3 pixels. Below the 
corresponding spatial weight matrix: 
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2.4.2 Temporal averaging 

In the original classification for each point the last ten historical measurements were stored and 
used in the calculation of the subclass. There was no limit for the age of the measurements and 
all measurements had equal weight. In the new model a time averaging function is introduced. 
An exponential decay function with a sharp cutoff time is chosen: 
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Equation 2-12 
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Figure 3 Time weighting function 
 
where Δt = to - t is the time difference between the time of observation t of a certain pixel (x, y) 
and the time of the latest observation to of the central pixel (xo, yo). Future observations (Δt <0) 
get zero weight and are thus not taken into account. A is the user input time decay constant, and 
B the user input cutoff time. Input of A = 0 yields a flat function. Observations that are older 
than B will not be taken into account. Input of B = -1 means there is effectively no cutoff time. 
 

2.4.3 Combined Spatio-temporal averaging 
 
All measurements are used with a weight factor Wst(x, y, t) that is the product of the spatial 
weight factor Ws(x, y) and the temporal weight factor Wt(t). The space-time weight factor 
Wst(x, y, t)  is normalised to give the resulting weight factor w(x, y, t). 
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Equation 2-13 
 
 
For calculating average values of ice-dependent parameters, a final weighting factor 
Wf(x, y, t) including the a posteriori probability p(ice|x, y, t) is introduced, as well as its 
normalised equivalent wf(x, y, t): 
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Equation 2-14 

 

Now the average value for any ice-dependent variable, e.g. ice parameter a may be calculated 
accordingly: 
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Equation 2-15 
 
2.5 The a priori and a posteriori ice probability 
The a posteriori probability is given by Equation 2-9  
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Equation 2-16 

where the a priori probability P( ice) still has to be chosen. When using Bayesian statistics, it is 
not allowed to use the same information (measurement) in both the a priori and a posteriori 
probability. In our model, all historical measurements at time to up to time tn-1, which are older 
than the measurement under consideration xn at time tn, are used in the calculation of the a priori 
probability Pn(ice). The new measurements at time tn , also those of the surrounding pixels, are 
used for the calculation of the a posteriori probability p(ice|x). This new a posteriori probability 
p(ice|x) is stored and used for the calculation of the a priori probability Pn+1 at a future time tn+1. 

We use Equation 2-16 to recursively calculate the a posteriori probabilities. The index n refers 
to measurement n at position x = xn  and time t = tn .  
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Equation 2-17 
 
To make a start the a priori probability P0(ice) is set to a climatological value Pcl(ice)  for which 
the value of Pcl(ice) = 0.5 can be chosen if no information is available. Later on the a priori 
probability will be a function of previous measurements as well. In our model the a priori 
probability Pn(ice) is chosen to be a weighted average of a climatological value Pcl(ice) and the a 
posteriori probability from the previous measurement p(ice|xn-1). The weighting factor wn(t) is a 
decreasing exponential function of time (see paragraph 2.4.2), so that the weight from a past 
measurement xn-1 is gradually reduced over time: 
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Equation 2-18 

 
If the time between two measurements tn and tn-1  is very large then wn(tn-1)  0 and the a priori 
probability Pn (ice)  Pcl (ice). The information of the previous measurement is lost and the 
climatological value is used as the a priori probability. 
 
If the time between two measurements tn and tn-1  is very short then wn(tn-1)  1 and the a priori 
probability Pn (ice)  p(ice|xn-1). The information of the previous measurement is still valid and 
it is used as the a priori probability. 
 
For the a priori probability Pn (ice) at time t=tn one gets (see Appendix A):  
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Equation 2-19 
 
Together with Equation 2-17 this equation is efficient from a computational and memory 
management point of view, because what need to be stored at time tn-1 is only the a priori 
probability Pn-1(ice), the time of measurement tn-1  and the measurement xn-1  itself. Using this 
information and the new measurement p(xn |ice)  at time tn the new a posteriori probability 
p(ice|xn) can be calculated. 
 
2.6 Distribution of σ0 -triplets 
 
In order to be able to calculate the a posteriori probability a geophysical model and error model 
for both ice and wind is necessary. The model for wind and ice are the wind cone and ice line 
respectively, which both have a dependency on the incidence angle θ only. The error model is 
described below. 

2.6.1 Error model for sea points 
 
The distribution of sea points around the wind cone in the measurement space (σ0  in dB) is 
assumed to be a standard normal distribution: 
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Equation 2-20 
 

Here r is the distance to the wind cone, and s is the standard deviation of this distance. For the 
normalised distance to the wind cone dwind = r/s, the value of dwind = 1 corresponds to the 
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standard deviation. 

2.6.2 Error model for ice points 

The distribution of the b and c ice parameter is assumed to be normal. For the distance to the ice 
line in the measurement space this assumption results in a Rayleigh-distribution (Weisstein 
(2006)]: 
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Equation 2-21 
 
Here r is the distance to the ice line and s corresponds to the standard deviation of the (normal) 
distribution when regarding the b or c parameter. The average value of this distribution is 
 
 

2
~ πsPrayleigh =  

Equation 2-22 
 
and the maximum value occurs for r = s. In the new sea/ice classification the normalised 
distance to the ice line dice = r/s is used. The top of the distribution will then occur at the 
value of dice = 1. 
 

3 Icemodel Verification 
 
 
3.1 Introduction 
 
This section gives a description and a discussion of some test cases that have been run to verify 
the ice model. All test cases are run for the Antarctic region. For the wind computation CMOD5 
has been used with inversion and 2D-var ambiguity removal. For the tests ice model version 5.0 
has been used. ERS BUFR files have been reprocessed for producing the ice maps. The 
reprocessing was necessary because normally points below a temperature of 273 K (SST limit) 
are flagged out and not processed at all. This means no wind solution is present and no distance 
to cone is calculated. The SST mask is an area larger than that enclosed by the ice edge. For 
wind calculations it is a conservative mask but for producing ice maps all points need to be 
processed.  
 
The collocated input files are taken from the MOS-archive: 
 
/fa/ao/sat/ers/scat/reprEra40/ 
 
The reprocessed output files are written to the MOS again: 
 
/ua/verspeek/sat/ers/scat/reprIce/ 
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3.2 Typical run 
Output of the ice model run is mainly in the form of graphical files in the format 
S<yyyymmdd>*.ppm or N<yyyymmdd>*.ppm, where S/N represents Southpole/Northpole, and 
<yyyymmdd> represents the date. These bitmap files can be combined into an animated gif 
movie and  viewed with e.g. a web browser. Files S<yyyymmdd>.ppm show the ice subclass 
(Table 2, Table 4), and for class = ice (α2, or β1) the average value of the a ice parameter. 
 
Files S<yyyymmdd>t.ppm show the basic ice class (Table 1) 
 
Files S<yyyymmdd>postprob.ppm show the a posteriori ice probability p(ice|x). 
 
In the middle of the swath (node 10), the ice line is closely lying to the wind cone and the 
difference between ice and wind is hard to make. This can be seen in the left figure and the 
middle figure where the middle of the satellite track can be seen as orange, respectively gray 
area. In the right figure this effect is averaged out. 
 

       
Figure 4 Graphical output of typical run (2000-05-24). The left picture shows the basic sea/ice classes 
(Table 1), the middle picture the a posteriori ice probability on a gray scale, and the right picture shows 
the sea/ice subclasses (Table 4) and the ice parameter a on a gray scale. 
 
3.3 Parameter sensitivity 
 
In the following tests the influence of several input parameters is examined, especially the 
parameters that deal with the spatial and temporal averaging. 
 
3.4 Spatial averaging 
Different levels of spatial averaging can be introduced by specifying different values for the 
decay length L in paragraph 2.4.1 with the "--decaylength" command line option. The decay 
length is given in units of pixel length (25 km). 
 
For the default decaylength of L = 3 the spatial weighting matrix reads: 
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In figure 5 the icemodel is run with a number of different values of the decay length. In all cases 
the default value for the decay time is used. Green points, representing points with not enough 
measurements, are only present for L = 0 where effectively no spatial averaging is applied. The 
level of detail does not seem to decrease much with increasing decay length. This is probably 
caused by the fact that the radar footprint is 50x50 km2 compared to the pixel size of 25x25 km2. 
Also the time averaging already adds to the smearing out of minor details. In the last case where 
a flat spatial function is taken, the averaging area is limited by the implementation that uses a 
5x5 matrix around the central pixel for spatial averaging (an “all ones” matrix in this case). 
 

   
 

   
 
Figure 5 Spatial averaging in order of increasing averaging area, respectively decay length L= 0, 
L=1, L=3,  and L=infinity (flat function). 
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3.5 Temporal averaging 
 
In the original model the time averaging function was flat without a cutoff time, with a 
maximum of 10 historical measurements that were taken into account. In the new model the time 
decay constant A and the cutoff time B determine the time averaging behaviour (see paragraph 
2.4.2). A number of test runs with increasing influence of old measurements have been 
performed. The default decay length has been applied for spatial averaging in these runs.  
 
As can be expected, the number of green points representing points that have not enough 
measurements for calculating the ice probability, is reduced when going to a larger time 
averaging interval. The number of orange points representing points where the ice-parameter 
standard deviation is too large, is increasing. The number of falsely classified points, water 
where it should be ice, or ice where it should be water, is decreasing also. For the case of a 
decaytime of A = 1 hour, where effectively only the latest measurement is taken into account, 
spurious water points can be seen in the middle of the ERS track. For these middle wind vector 
cells (WVCs), the iceline is lying closely to the windcone and the classification is the most 
difficult to make. For the last figure with a decaytime of 192 hour some of the details seem to be 
smeared out. 
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Figure 6 Time averaging in order of increasing averaging time. Corresponding to a 
decay time of A=1 h, A=12 h, A=24 h and A=192 h. 

 
3.6 Wind information 
 
The wind information (distance to the wind cone) may be omitted with the command line option 
"-dontuse windinfo". This mode is useful for testing unprocessed BUFR files or the ice model 
itself. It can also be useful when an ice mask is used that is retrieved by other means, or when a 
model is added to examine tropical rain forests or other vegetation. The calculated ice parameter 
a is the same in areas which are truly ice, but in the water areas lots of spurious ice areas occur. 
 

 
Figure 7 No wind information used 

 
3.7 Land points 
Land points may be included with the command line option "-use landpoints". The check on the 
land mask bit in the ESA quality flag is then omitted. Also the check on the value of the standard 
deviation for the ice parameter a has been omitted (no orange points). The land point near the 
Antarctic "coast" have a very high value for the a parameter, indicating high reflectivity. The 
color in the bitmap is clipping to white, indicating a value of a >= 15. The high brightness is 
caused by snow crust and refrozen ice in the snow cover of the glacial ice sheets. 
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Figure 8 Including land points, the limit on the standard deviation for subclass b2 (orange) has been 
relaxed. 

 

 
3.8 Comparison with SST 
 

The output of the ice model is compared with an ice map produced with Surface Temperature 
(SST) data from the ECMWF Era40 database. In parameter STL1 above sea the Sea Surface 
Temperature (SST) and above land the Soil Surface Temperature is stored in this parameter. 
This parameters is read in from a file with daily data on a predefined regular grid and collocated 
with the ERS BUFR data using interpolation. By specifying a small temperature interval for the 
SST contour plot  from -4°C to +4°C in steps of 1°C, it can be seen that a SST temperature of -2 
°C is conservative, i.e. is enclosing the ice edge. 
 
 

     
Figure 9  SST ice map (left), icemodel a posteriori ice probability (middle) and the two pictures overlayed 
on 2000-05-24 

 
3.9 Comparison with other ice models 
 

The ice maps from the KNMI ice model are compared with the ice maps as produced by 
IFREMER. IFREMER uses the anisotropy and derivative parameters to visualise the ice map. In 
Figure 10 the three figures represent the KNMI ice map, the IFREMER ice map from ERS-2 
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data, and the IFREMER ice map ice map from Quikscat. The IFREMER maps represent the 
backscatter at 40°. The ice edge and major ice parameter structures are consistent among the 
three cases. 
 
 

       
Figure 10 Comparison of ice maps.  On the left the KNMI ice map on 2000-05-24, in the middle the 
IFREMER weekly ice map (2000-05-22/2000-05/28) showing the σ0  at 40° from ERS-2 data, on the 

right the IFREMER daily ice map from Quikscat data on 2000-05-24. 
 
3.10 Error model verification 
 
 

In paragraph 2.6.1 and 2.6.2 the error models for wind and ice triplets have been described. In 
order to see if the assumption of these distributions are correct it can be compared with the 
distribution from actual measurements. Figure 11 shows the distance to wind cone for one day of 
data. Negative cone distance corresponds to a measurement point lying inside the cone, positive 
distances correspond to points lying outside the wind cone. Only points that passed the quality 
control have been used. The shape of the measured distribution is more sharply peaked than the 
theoretical Gaussian distribution.  
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Figure 11 Distribution of the distance to wind cone. A negative value corresponds to a triplet lying inside 
the cone, a positive value corresponds to a triplet outside the cone. 
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In Figure 12 the distribution of the ice parameters a, b and c is plotted. Here only points 
belonging to ice class (b) (“Ice” – see Table 1)  have been used. Parameter a, the along-line 
coordinate, looks like a superposition of several Gaussian distributions which could correspond 
to different types of ice. The coordinates perpendicular to the ice line, b and c, together 
determine the distance to ice line. The c-distribution is skew and the extra points are lying on the 
side of the wind cone which suggests that these measurements are actually wind points. This 
could be caused by measurements for which the distance to wind is large but not correct. These 
points may be flagged but the flag is not checked in this case, only the distance to cone is 
considered. Apart from this skewness the b and c distributions look Gaussian in accordance with 
the assumption. 
 

 
Figure 12 Distribution of the a, b, and c ice parameters.  
 

4 Conclusions 
 
The ice model proves a useful tool for sea/ice discrimination and could help in the quality 
control for the wind retrieval procedure. The calculated ice map is a product on its own based on 
the scatterometer measurements. The generalised spatial and time averaging gives the user more 
control and produces pictures of the ice map without artificial boundaries. Default values for the 
adjustable parameters are built in to give meaningful results, based on the outcome of this study. 
For the time averaging a value of A = 192 h is taken as a default, and for the spatial averaging a 
decay length of L=3. The threshold for the sea/ice discrimination of p(ice|x).= 50 % seems good. 
The ice edge is not very sensitive to this parameter. For conservative calculations a threshold of 
p(ice|x). = 10 % could be taken as well. The limit for enough measurements (total weight Wf >= 
5) could be lowered or made dependent on the averaging constants. The limit for the standard 
deviation of the ice parameter a could be made dependent on the absolute value of a. 
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5 Expectations for ASCAT 
 

The MetOp satellites will each carry an ASCAT scatterometer that has about the same antenna 
geometry as the ERS scatterometer, but will duplicate the swath on both sides of the satellite 
nadir track. The same ice model can be used for ASCAT, with the ice line origin and slope, and 
the scaling factors for the ice parameters recalculated using a new measurement set. ASCAT has 
higher incidence angles than the ERS scatterometer, which is beneficial for the sea/ice 
discrimination. The larger coverage, especially when more satellites will be operational, will 
allow for higher spatial and time resolution. The ERS scatterometer is always looking away from 
the South Pole, causing a large "blind spot" above Antarctic land. For ASCAT it will be much 
smaller because ASCAT looks in both directions. A region of ice with stable backscatter 
properties over a longer period can be used for calibration of the ASCAT scatterometers. 
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Appendix A – Derivation of the a 
posteriori probability 
 

The a posteriori probability is given by Equation 2-9
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Equation 5-1 

 
We use Equation 2-9 to recursively calculate the a posteriori probabilities. The index i refers to 
the ith measurement at time t = ti and position x = xi. Here the probabilities p(xi|ice) and 
p(xi||water) may be space-averaged values of measurements at time t = ti. For simplicity this is 
not denoted in the formulas: 
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Equation 5-2 
 
 
In our model the a priori probability Pn(ice) is chosen to be a weighted average of a 
climatological value Pcl (ice) and the a posteriori probability from the previous measurement 
p(ice|xn-1) The weighting factor wn(t) is a decreasing exponential function of time, so that the 
weight from a past measurement xn-1 is gradually reduced over time (Equation 2-18): 
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Equation 5-3 

 
By using Equation 5-3: 
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We can derive a formula for the a priori probability P(ice) at each time step: 
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)

For t=t0 (no measurements yet): 
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For t=t1 : 
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For t=t2 : 
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For t=t3 (using wn(tk)wk(ts) = wn(ts)): 
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For t = tn.: 
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Equation 5-4 

From this equation using recursion follows Equation 2-19: 
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Equation 5-5 
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The a posteriori probability for t=tn is (Equation 5-2): 
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Appendix B - Command line options 
 
The ice model has been compiled with several Fortran-90 compilers and run on Linux and Unix 
systems. A stand-alone of the ice model exists and it is also incorporated in the ERS Data 
Processor (ESDP). It makes use of several genscat modules, e.g. for BUFR handling. A makefile 
is available with the code. The ice model code resides in CVS on the bcp1 machine. The latest 
version can be retrieved with the command: 
 
>vbcvs checkout icemodel 
or 
>cvs -d :ext:'logname'@bclap1:/data/cvs/nwpsaf checkout icemodel 
 
The icemodel program has a lot of optional parameters which may be specified. When 
parameters are omitted they will be given their default value. 
 
icemodel.x [-shortoption|--longoption] <optionValue> 

 
with <> indicating non-obligatory input, [] indicating obligatory input, and | indicating alternatives. 
The following command line options are available:  
 
[-i|--in] <metainfile>   Specify meta inputfile containing the list of BUFR files 

to be processed. 
 
[-if] <infile> Specify one BUFR inputfile. Overrules <metainfile>. 
 
[-S|--Southpole]   Icemap for Southpole region 
 
[-N|--Northpole]   Icemap for Northpole region 
 
[-dl|--decaylength] <decayLength> 
 Decay length. If decaylength=0 only the central pixel is 

used. If decaylength=-1 a flat function is used (all ones 
matix) 
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[-dt|--decaytime] <decayTime> 
  Decay time. If  dt=0 decay time is infinite (flat 

function) 
 
[-ct|--cutofftime] <cutoffTime> 
  Cutoff time. If  ct=-1 cutoff time is infinite (no cutoff) 
 
[-outputLevel] <outputLeveL> 
 Output level for graphical files. =0 means no graphical 

output files.  
 
[-dontwriterst]  Don’t write a restart file when the processing is 

finished. 
 
[-rst|--restartfile] <restartFileName>  

Rstart file to be read in to start the processing.  
 

[-dontuse windinfo]  Don’t use wind information  
 
[-use landpoints]   Use the land points 
 
[-o|--out] <outputfile> Specify ASCII outputfile 
 
[-n|--Nodes] <nodeNrs> Nodes to be used for generating ASCII output file, e.g. 

–n “[3,4,5]”(don.t forget the hooks and quotes)  
 
[-m|--mask] <MaskNr>   Mask number to be used for generating the ASCII 

output file.  
 
[-h|--helpall] Shows command line options.  
 
[-v|--version]  Shows version number 
 
[-d|--debug] <debugLevel>  Debug level. =0 means no debug output.  
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Acronyms and abbreviations 
 
Name Description 
ASCAT Advanced scatterometer 
CMOD C-band geophysical model function used for ERS and ASCAT 
ECMWF European Centre for Medium-Range Weather Forecasts 
ERS European Remote sensing Satellite 
ESDP ERS Data Processor 
EUMETSAT European Organization for the Exploitation of Meteorological Satellites 
GMF Geophysical model function 
KNMI Koninklijk Nederlands Meteorologisch Instituut (Royal Netherlands 

Meteorological Institute) 
MetOp Meteorological Operational satellite 
MLE Maximum Likelihood Estimator 
NWP Numerical Weather Prediction 
SST Sea Surface Temperature 
WVC Wind vector cell, also called node or cell 
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