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1 Introduction 
Triple collocation is a method that is now widely used to characterize systematic biases and random errors 
in in-situ measurements, satellite observations and model fields. It attempts to segregate the measurement 
uncertainties, geophysical, spatial and temporal representation and sampling differences in the different 
data sets by an objective method. 

In scientific literature often dual comparisons are provided for validation, verification and calibration. 
However, implicit assumptions are made that limit the accuracy of dual comparisons. A frequent and 
often biased assumption is that all errors are due to the system that is being tested against a reference 
system, that is in turn assumed perfect, but Stoffelen [1998] also refers to biases associated with 
regression and with error distributions. Problems with dual comparison, such as satellite data verification 
against in-situ measurements, may be caused by differences in: 

 temporal and spatial representation (instantaneous versus hourly mean and for example local, average 
over a satellite footprint or NWP grid volume); 

 geophysical representation (real winds versus equivalent neutral winds, bulk versus skin SST, etc.); 
 spatial and temporal sampling (over a whole basin or only at in-situ stations, twice daily or sampled 

over full diurnal cycles); 
 error distributions, including aspects of error amplitude and skewness. 

These issues cannot be clearly resolved in dual comparisons, as scatter will be caused simultaneously by 
all issues above for both observing systems and there is no clear objective way to assign errors to one or 
the other. In other words, dual comparisons are really difficult to comprehend. Stoffelen [1998] formalizes 
some of these problems in his section 3 and Appendix A. This basically has driven the discovery of triple 
collocation.  

In triple collocation, three (ideally) independent data sets are brought together, so three scatter plots can 
be made. The plot with the least scatter obviously denotes the two systems that agree most, while the 
worst scatter plot, indicates that the excluded and third measurement system is the best performing. 
Moreover, triple collocation provides the relative linear calibration (scaling) of the three systems. Also, 
assuming known (normal) error distributions and after mutual linear calibration (rescaling) of the 
distributions with the errors, matching of the cumulative PDF leads to higher order calibration as well 
(known as CDF matching). This is described in the original paper (Stoffelen [1998]) dealing with the 
triple collocation method and elaborating it for buoy, scatterometer and NWP wind data sets.  

Following Stoffelen [1998], it has been and is being used in wind and stress comparisons [Portabella and 
Stoffelen, 2009; Vogelzang et al. , 2011] wave height comparison [Caires and Sterl, 2003; Janssen et al., 
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2007], sea surface temperature (SST) [O’Carroll et al., 2008], soil moisture [Scipal et al., 2010]; 
Delphine et al., 2011], ice drift [Hwang and Lavergne, 2010], precipitation analyses [Roebeling et al., 
2011], etc. Some of these authors consider the measurements as already properly calibrated and perform 
only random error estimation. 

A limitation of the triple collocation method may be the fact that three independent measurement systems 
are needed that must deliver simultaneous collocated measurements. Collocation in space and time may 
be hard to achieve and it takes typically one year to gather enough data for successful application of the 
method. The method can moreover only be applied at those locations and times where triple collocation 
data is available. Usually this is limited by the availability of in-situ observation locations, i.e., similar to 
dual in-situ comparisons, and the satellite overpass times, i.e., twice a day for polar satellites in sun-
synchronous orbits. 

Another hurdle in application may be that the triple collocation method is felt difficult to comprehend. 
Where in dual comparisons often implicit assumptions are made on the error distributions (see above), in 
triple collocation explicit assumptions are needed on the random and systematic error distributions, i.e., a 
realistic error model needs to be defined and tested. The method has been described in the scientific 
literature [Stoffelen, 1998], but such a presentation must necessarily be very concise. Implementation of 
the method is tedious, since a more detailed description on text book level is missing. This report is 
intended to fill that gap. 

This report gives a full description of the triple collocation error model, the derivation of the calibration 
coefficients and the measurement error variances, the assumptions needed in the triple collocation 
method, and its numerical implementation. Also attention is paid to the role of representation errors and 
the scale dependency of measurement errors. 
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2 Derivation 
2.1 Definitions 

In this chapter the following definitions hold: 

Assume  measurements of a quantity N α , denoted as N,...,,i,i 21=α . The first moment of α  , or its 
average, is denoted as  and satisfies αM

 ,
N

M
N

i
i∑

=
>==<

1

1 ααα  (2.1) 

where <> denotes statistical averaging. If there are also  measurements of a quantity N β , the mixed 
second moment  satisfies αβM

 ∑
=

>==<
N

i
ii .

N
M

1

1 βααβαβ  (2.2) 

In case αβ =  one obtains the ordinary second moment . ααM

The covariance  is defined as αβC

  (2.3) .MMMC βααβαβ −=

In case  αβ =  equation (2.3) yields the variance of α , . 2
ααα σ=C

2.2 Error model 

2.2.1 Calibration and measurement errors 
Suppose three measurement systems X, Y, and Z, giving collocated measurements  of the same 
quantity 

),,( zyx
t . Supposing that system X is the reference system with respect to which systems Y and Z are to 

be calibrated. Suppose also that linear calibration is sufficient for the whole range of values under 
consideration, and that the reference system is free of bias (i.e., there are no systematic errors or these are 
corrected for). The measurements then satisfy 

 ( )
( )

,

zzz

yyy

x

tabz
taby

tx

ε
ε

ε

++=
++=

+=
 (2.4) 

where  is the common part of the signal (sometimes referred to as “truth”) and t zyx ,,, =αεα  the true 
random error in each measurement. These random measurement error components are assumed unbiased, 
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 .z,y,x, =>=< αεα 0  (2.5) 

It is assumed that the error variances are constant over the whole range of values under consideration, so 

 .  (2.6) z,y,x, =>=< ασε αα
22

Further, it is assumed that the errors are independent of the common signal t , so 

 ,z,y,x,tt =>><>=<< αεε αα  (2.7) 

which yields zero due to (2.5).  

2.2.2 Representation error 
The true or calibrated measurement errors are also assumed uncorrelated, 

 ,z,y,x,, =>=< βαεε βα 0  (2.8) 

unless common representation errors play a role. Suppose that system Z has a much coarser resolution 
than system Y and that system Y has coarser resolution than system X. High resolution signal that is 
common to X and Y will not be detectable for system Z and therefore be regarded as error. It can be 
represented as a correlated error between X and Y, so 

 , (2.9) ryx
2>=< εε

with 2r  the variance of the representation error, i.e., the signal in X and Y that is not detected by Z. The 
other error correlations are zero according to (2.8). It is noted that coarse resolution may refer to spatial or 
temporal resolution, but there may also be geophysical representation issues that make systems X and Y 
look more alike while system Z lacks certain geophysical sensitivity. For example, for SST two systems 
X and Y could measure skin temperatures and a third system Z bulk temperature. X and Y then measure 
signal that is lacking in Z, and therefore < ε x ε y > ≠ 0. 

Note that with this procedure, the error model (2.4) gives the measurement error variances at the scale of 
the coarse observations made by system Z. It will be shown in section 2.4 how the measurement error 
variances at the scale of the intermediate resolution system Y can be obtained as well. In chapter 3 the 
concept of scale-dependent errors will be elaborated further, together with procedures to obtain the 
representation error.  

2.3 Calibration coefficients and error variances 

Forming the first statistical moments of (2.4) yields  
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The first moments of the random measurement errors all equal zero by (2.5). The first equation of (2.10) 
therefore yields  and can be used to eliminate >=< tM x >< t  from the others. This results in 

  (2.11) .
MaMb
MaMb
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xyyy
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The ordinary second-order moments of (2.4) are 

  (2.12) .
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This can be simplified by application of (2.4)-(2.9) and by using >=< tM x  to 

  (2.13) ,
2
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Now  and  can be eliminated from (2.13) using (2.11). A little algebra and introduction of the 
covariances (2.3) results in 

yb zb

  (2.14) (
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In the same way the mixed second order moments of (2.4) read 

  (2.15) .
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This can be simplified using (2.4)-(2.9) and >=< tM x  to 

  (2.16) ,
2

2

22

xzzzx

zyxyzxzyzyyz

yxyyxy
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where, according to (2.9), we assumed that system Z has coarser resolution than systems X and Y. Again, 
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yb  and  can be eliminated from (2.16) using (2.11). A little algebra and introduction of the covariances 
(2.3) results in 

zb

 

( )
( )

( )
.

22

22

222

xzzx

xzyyz

xyxy

MtaC
MtaaC

rMtaC

−><=
−><=

+−><=
 (2.17) 

Eliminating  and  from the second equation in (2.17) using the first and third, respectively, yields ya za

 .222

yz

xyzx
x C

CC
rMt =+−><  (2.18) 

Substituting (2.18) back into (2.17) yields 

 ., 2raC
C

a
C
C

a
yxy

yz
z

zx

yz
y −

==  (2.19) 

Substituting (2.18) and (2.19) into (2.14) and solving for the error variances yields 
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( ) .,, 2
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2
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C
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CraC
C

C
raCC

C
yxy

zxyz
zzz

zx

yzyxy
yyy

yz

yxyzx
xxx −

−=
−

−=
−

−= σσσ (2.20) 

This completes the derivation of the calibration coefficients and measurement error variances of the 
calibrated data with the triple collocation method. However, the actual implementation of the method 
makes use of a slightly different formulation. Moreover, there are two other issues that receive further 
attention: 

1. If the representation error plays a role, the error variances are with respect to the system with coarsest 
resolution; 

2. The representation error variance is valid for the calibrated data, not for the raw data. However, note 
that ay r 2 is a scaled representation error that may be determined from the raw Y data. 

These issues will be addressed in the next sections.  

2.5 Analysis of the calibrated data 

The measurement error variances for the calibrated data are obtained from error model (2.4). Suppose that 
one has an estimate of the calibration coefficients  and αa yxb ,, =αα . The calibrated measurements x , 
y , and z  are given by 
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 (2.21) 

Note that no errors are involved in (2.21), because it just gives the inverse of the linear calibration as it is 
performed on the raw data. Now the triple collocation error model (2.4) can be applied to the calibrated 
data. The model is solved the same way as in section 2.3 under the same assumptions. The results are 

 ,, xzzzxyyy MaMbMaMb −=−=   

 ,, 2raC
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a
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a
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y −

==  (2.22) 
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where the bar indicates that all quantities are for calibrated values. Note that the representation error has 
been defined with respect to the calibrated data. 

If the values of the calibration coefficients  and αa yxb ,, =αα  are correct, then the measurements x , y , 
and z  are properly calibrated and we must obtain 

 .
1
0

==
==

zy

zy

aa
bb

 (2.23) 

Using (2.22) the relation 1== zy aa  leads to ( )2rCCC xyyzzx −== , and the error variances for 
calibrated data reduce to 

 .,, 222222 rCCrCCrCC xyzzzxyyyyxyxxx +−=+−=+−= σσσ  (2.24) 

Equation (2.24) is valid with respect to the system with coarsest resolution, say system Z. The equations 
in this section can be solved iteratively on a computer. More details are given in chapter 4.  

2.4 Resolution 

If all three measurement systems have roughly the same resolution then the representation error  
and the equations for calibration coefficients and measurement error variances further simplify. When the 
representation error plays a role, then the results of the previous section apply to the system with coarsest 

02 =r
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resolution, because the representation error has been taken into account as an error correlation between 
the two systems with higher resolution. 

Suppose that system Z has coarsest resolution. It is easy to obtain the error variances with respect to the 
system with intermediate resolution: just subtract the representation error variance r 2 from  and , 
since it represents part of the common resolved signal in X and Y. System Z does not resolve this part of 
the signal and error variance r 

2
xσ 2

yσ

2 should be added to . Now the signal detected by systems X and Y but 
not by Z is counted as measurement error of system Z (lack of resolution) and as signal of X and Y. 
Denoting the error standard deviation at intermediate resolution by 

2
zσ

zyx ,,,ˆ =ασα , one has 

  .
ˆ
ˆ
ˆ

22

2

2

rCC
CC
CC

xzzzz

xyyyy

xyxxx

+−=
−=
−=

σ
σ
σ

 (2.25) 

Suppose now that system X has much finer resolution than system Y. Equations (2.25) then gives the 
measurement error variances with respect to the resolution of Y. It is not possible to say something on the 
measurement error variances at the finest resolution of system X, unless additional assumptions are made 
on the measurement error distributions. For example, if X is a calibrated local in-situ measurement 
system, then the measurement error may be known. This could be used to compute a temporal or spatial 
representation error for Y and Z, such that the errors of X, Y and Z in representing a local in-situ 
measurement may be estimated.  

For our scatterometer application, system X corresponds to moored buoys, system Y to the scatterometer, 
and system Z to the NWP background. The triple collocation method enables us to calculate error 
variances at the scales resolved by the NWP background and at the scale of the scatterometer, which 
scales have our main interest. 

2.6 Resume 

The triple collocation method requires the following assumptions: 

1. Linear calibration is sufficient over the whole range of measurement values; 

2. The reference measurement values are unbiased and calibrated; 

3. The random measurement errors have constant variance over the whole range of calibrated 
measurement values; 

4. The measurement errors are uncorrelated with each other (except for representation errors); 

5. The random measurement errors are uncorrelated with the geophysical signal. 
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Under these assumptions the calibration coefficients and measurement error variances are given in terms 
of the first and second order statistical moments as 

 ,MaMb,MaMb xzzzxyyy −=−=   

 ,, 2raC
C

a
C
C

a
yxy

yz
z

zx

yz
y −

==   
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−

−=
−

−= σσσ   

where system Z has coarser resolution than the other systems, resulting in a representation error of 2r . 
These results hold with respect to the resolution of system Z and are valid for the uncalibrated data. 

The error variances with respect to the system with medium resolution, which may be either X or Y, is 
obtained by subtracting the representation error from  and , and adding it to . Within the triple 
collocation method it is not possible to retrieve the measurement error variances with respect to the 
system with finest resolution (if any), unless additional assumptions on the error distributions are made. 

2
xσ 2

yσ 2
zσ

The error variances with respect to the calibrated data are found by implicitly solving the triple 
collocation error model. When the calibration coefficients  and αa yxb ,, =αα  are correctly estimated, 
the error variances are 

 ,,, 222222 rCCrCCrCC xyzzzxyyyyxyxxx +−=+−=+−= σσσ   

with the bars indicating that the corresponding quantity is for calibrated data. Note that the error variances 
with respect to the system of medium resolution (underlined) are independent of the representation error 
for the two systems with finer resolution (X and Y)  

 .,, 2222 rCCCCCC xzzzzxyyyyxyxxx +−=−=−= σσσ   
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3 Representation errors 
3.1 Resolution and representation errors 

Geophysical data originate from a variety of sources: in-situ measurements, satellite observations, and 
model predictions. Each type has its own geophysical, spatial and temporal characteristics: in-situ data are 
representative of a point whereas satellite and model data give a value that is representative for some area. 
Geophysical in-situ data are often presented as time averaged (for instance the wind speed and direction 
which is commonly given as average over 10 minutes or 1 hour), while satellite data are almost 
instantaneous. NWP models compute a new time step every 10 or 20 minutes and will represent temporal 
scales at about 5-7 times this time step [Skamarock, 2004]. 

For wind calibration, some authors use the assumption of frozen turbulence, called Taylor’s hypothesis 
[Taylor, 1921; Richardson, 1926], to manipulate (in-situ) data sets in order to reduce spatial resolution to 
match a comparison data set. We note that this is not a very accurate method of obtaining a certain spatial 
resolution. At a wind speed of 8 m/s, one would thus average 3600 s or one hour to match a satellite 
footprint of  ~30 km. When averaging over one hour one would however obtain an effective resolution of 
~15 km at 4 m/s, but only ~60 km at 16 m/s. Extreme high winds thus would be severely smoothed, while 
low winds would not be smoothed much. Spatial and temporal smoothing of a field change the PDF, 
because extreme high values will become less frequent. Therefore, calibration or regression with respect 
to a temporally smoothed data set will tend to follow the extreme values and be representative for a 
coarser resolution than anticipated. Temporal smoothing of transient fields in order to reduce spatial 
resolution is thus prone to rather complex error characteristics. Following Kolmogorov’s hypothesis 
[Kolmogorov, 1941], it appears more attractive to model small-scale variability through a 
representativeness error [Stoffelen, 1998]. 

Spatial satellite and model data are produced at different resolutions. With both temporal and spatial 
resolution the true resolution of a measurement system is meant, i.e., the size of the smallest detail 
discernible with that system in resp. time and space. In most cases this resolution is coarser than the grid 
size on which the product is presented.  

As noted earlier, coarse resolution may refer to spatial or temporal resolution as described above, but 
there may also be geophysical representation issues that make systems X and Y look more alike while 
where system Z lacks certain geophysical sensitivity. For example, for SST two systems X and Y could 
measure skin temperatures and a third system Z the bulk temperature. X and Y then measure signal that is 
lacking in Z, and therefore in triple collocation < ε x ε y > ≠ 0. Another example may exist in soil wetness 
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from a NWP model, where the geophysical representation in the NWP model lacks local soil 
characteristics. 

The difference in resolution between various data types becomes important when intercomparing data or 
when assimilating observed data into numerical prediction models. It gives rise to representation errors, 
also referred to as error of representativeness. The term error may be a bit misleading, because the 
representation error is not a real error but originates from merging data at different resolution. Moreover, 
its role depends on the point of view that one takes. 

Suppose, again, three measurement systems X, Y, and Z, and three resolution classes: coarse or low 
resolution (L), medium resolution (M), and fine or high resolution (H). Suppose further that the resolution 
class is given as subscript to the system, and that we have the situation {XH, YM, ZL}. For the case of 
wind scatterometry this corresponds to XH being the buoy measurements, YM the scatterometer 
observations, and ZL the NWP model background. The highest resolution scale seen by system XH will, of 
course, be missed by systems YM and ZL. Medium scales will be seen by systems XH and YM, but also be 
missed by system ZL. From the point of view of XH the other two systems have a hopelessly blurred view 
of reality. In case of comparison to and verification of system YM the high resolution details seen by XH is 
unwanted variance and treated as error, while system ZL misses medium resolution details that are 
important for the verification of YM. In case of verification of system ZL all medium and high resolution 
details is unwanted variance and treated as error. In particular, the medium resolution part resolved by XH 
and YM will appear as a correlated error in case of ZL verification or calibration and will add to the error 
correlation >< yxεε . 

The triple collocation method uses the common signal of {XH, YM, ZL} and thus the measurement error 
variances are specified at the lowest resolution. It is important to include the representation error variance 
r 2 into the error model. Not only does it affect the results (the representation error is of the same order of 
magnitude as the measurement errors in the case of wind scatterometry), but it also offers the possibility 
to obtain the measurement errors at the medium resolution by subtracting r 2 as common XH and YM 
signal variance from  and , as discussed in section 2.5. The representation variance r2

xσ 2
yσ  2 should in 

this case be added to error  since system Z2
zσ L cannot resolve this signal. The system XH measurement 

error at medium resolution, xσ̂ as specified in (2.25), contains geophysical signal that is resolved by 
system XH, but not by the other systems, denoted rx

 2. While error xσ̂  is retrieved from the triple 
collocation method, we would need further information on the local measurement errors, xM ,σ , to obtain 
an estimate of the additional geophysical variance resolved by XH, this is . 22

,
2ˆ xxMx r+= σσ

The argument can be repeated for other resolutions of the three measurement systems. For instance, 
O’Connor et al. [2008] discuss the case {XH, YM, ZM} with XH in-situ sea surface temperature 
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measurements and YM  and ZM satellite observations. In this case 0>=< yxεε  as there is no common 
temperature signal of YM  and XH not resolved by ZM. Table 3.1 summarizes a number of cases. All other 
cases follow from interchanging the roles of X, Y, and Z, and the fact that representation errors do not 
play a role when all three systems have the same resolution. 

 

Resolution Representation error 
X Y Z >< yxεε  >< zyεε  >< xzεε  

H H M/L 2r  0 0 

H M L 2r  0 0 
H M M 0 0 0 

H/M L L 0 0 0 

Table 3.1   Contribution of the representation error 2r to the error covariances for various resolution cases 

3.2 Calculation methods 

In the literature several methods are described for calculating representation errors. Which method can be 
used depends, of course, on data availability. 

Stoffelen [1998] and Portabella and Stoffelen [2009] obtain the representation error by considering the 
variance spectra of NWP background and scatterometer observations. They assume a scatterometer wind 
spectrum of [Lindborg, 1999]. The constant  is determined by requiring that the scatterometer 
spectrum equals the NWP spectrum at a certain spatial frequency , corresponding to a spatial scale of 
the order of 1000 km. Then the representation error equals the difference between the two spectra 
integrated from  to the highest spatial frequency , corresponding to the smallest scales in the 
spectrum. 

35 /ck − c

sepk

sepk maxk

Vogelzang et al. [2011] refine this approach by using observed scatterometer wind spectra rather than a 
theoretical  form. This is applied to various operational scatterometer wind products, and consistent 
results are obtained for  corresponding to a spatial scale of 800 km. 

35 /k −

sepk

Janssen et al. [2007] do not consider representation errors, but extend the number of datasets to five by 
using various NWP model results (first guess, analysis, and hindcast) that contain different levels of 
assimilation. The additional sets give rise to additional equations, allowing one to solve for six error 
correlations. However, error correlations between satellite observations (from altimeter) and in-situ 
(buoy) measurements are neglected, so basically the representation error is assumed to be zero. 
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O’Connor et al. [2008] discuss the effect of representation errors on the error correlations, but give no 
estimate for the magnitude of the representation errors. 
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4 Implementation 
Calculation of the first and second moments needed for the triple collocation model must be done with 
some care, since notably the second moments are sensitive for outliers in the data set. Outliers may be 
caused by anomalous geophysical conditions. For example, for scatterometers one may think of excessive 
sub-WVC wind variability, e.g., at the passage of a front or caused by a large convective downburst, or, 
particularly for Ku-band scatterometers, blurring of the ocean wind signature by rain. Most of these 
conditions are removed in a quality control step, but some outlier may remain due to a non-perfect 
probability of detection. Outliers also exist in in-situ data for various reasons, e.g., due to salting or icing 
conditions. To avoid problems caused by outliers it is better to filter them out, for instance by rejecting all 
data that lie away more than a specified times the standard deviation from the expected value. However, 
whether or not some measurement must be classified as outlier depends not only on the selection 
criterion, but also on the calibration, since the calibration determines the expected value of some 
measurement relative to the reference measurement value. 

It is clear that this problem is best solved in an iterative scheme as shown in figure 4.1. Adopting the 
formalism of section 2.5 one starts with an initial estimate of the calibration coefficients, , , 

, and , as well as for the expected distances from the calibration line,  ,  and . For 
scatterometer applications good results are obtained with the values 

(0)
ya (0)

za
)0(

yb )0(
zb )0(

xyd )0(
yzd )0(

zxd

  ,bb zy 0(0))0( ==

  ,aa zy 1(0)(0) ==

 m9(0))0((0) === zxyzxy ddd 2s-2

Now the iterative scheme starts to solve the triple collocation model. The next step is to go through all 
collocated triplets, calculate the calibrated triplets )( jjj z,y,x , with j  the triplet number. The triplet is 
rejected if any of the conditions 

 ,16 (0)
xy

xy
j d>δ  

 ,16 (0)
yz

yz
j d>δ  

 ,16 (0)
zx

zx
j d>δ  

holds (this is called the σ4  test, but is it written here in quadratic form). If the triplet is accepted, the f irst 
and second moments of the calibrated wind components are updated. 
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If all triplets have been processed, the values for the error variances and calibration coefficients are 
calculated from (2.23). The calibration coefficients are updated according to 
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Figure 4.1   Flow chart for triple collocation algorithm. 
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 ,z,y,
a
a

a
i

i ==+ α
α

α
α

)(
)1(  

 ,z,y,bbb ii =+=+ αααα
)()1(  

with  the iteration number. The expected distances to the calibration line are set equal to the sum of the 
estimated error covariances 

i

 22)1(22)1(22)1( ,, xz
i

zxzy
i

yzyx
i

xy ddd σσσσσσ +=+=+= +++  

For normal unbiased random error distributions, only one in 15,787 data points would fall outside the 4-
sigma range for each of the three differences in the triple collocation data set. Since these data points 
would be far away from the diagonal, one might want to check their contribution to the estimated errors 
and calibration. In this respect we note that one distance of 4 xσ  in 15,787 points adds 0.1% to the 
variance and thus 0.2% to the estimated standard error, i.e., is likely to be negligible in the context of the 
assumptions in the error model used for triple collocation.   

Now the next iteration can be started, unless the calibration coefficients have converged. 
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